
 

 

 

 

Abstract— Although current CT systems can scan the head in 

a very short time, patient motion sometimes still induces 

artifacts.  If motion occurs, one has to repeat the scan; to avoid 

motion, sedation or anesthesia is sometimes applied.  Previously, 

we demonstrated the feasibility of rigid motion correction for 

helical CT brain imaging, using an optical tracking system. This 

correction is effective, but small residual motion errors may 

remain because of the limited accuracy of the tracking system. 

In such case, ‘jagged’ artifacts are observed in the 

reconstruction of a Hoffman phantom after the motion 

correction. We propose a data-driven method to iteratively 

correct this residual motion. In every iteration, we estimate the 

motion view-by-view, which then can be used to update the 

system matrix used during reconstruction. The evaluation on a 

phantom measurement showed that the reconstructed image 

improved as the iteration number increased.  

Index Terms—Computer Tomography (CT), iterative reconstruction, 

rigid motion, data-driven correction.  

 

I. INTRODUCTION 

 

ssessment of the subject motion is of considerable general 

interest in tomography. A variety of methods for the 

estimation of motion in CT exist, including direct motion 

estimation using a camera system with visual markers [1]–[4] 

or without markers [5]–[7]. Artificial or anatomical 

landmarks can be also tracked in the image or projection 

domain [8], [9]. Indirect estimation methods have been 

proposed where motion is estimated through the 

minimization of errors in consistency conditions using 

projection moments [10], [11], or by an iterative process 

using re-projected image information [12]–[14]. Another 

approach has used similarity measures to quantify changes 

between projections to measure subject motion [15]. 

    Previously, our group has developed and optimized a rigid 

motion correction technique for helical CT brain scanning, 

which measures the head motion with a Polaris system 

(Spectra, Northern Digital Inc, Waterloo, Canada) [1], [2]. As 

shown in Fig. 1, some small irregularities were still visible at 

the edges of the phantom in the reconstruction image after 

motion correction. The possible reason is that there still is 

some residual unrecorded motion in each pose, caused by 

small errors in the pose measurements. This will result in 

‘jagged’ artifacts which are most visible at the edge of the 

phantom. This work aims to reduce or eliminate these 
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residual motion estimation errors, by further refining the 

motion estimates using the measured data only. 

 

 
Fig. 1.  Image after motion correction with measured poses with a 

pitch of 1.0. [Window Level=-200HU, Window Width=+2000HU] 

II. METHOD 

A. Motion estimation 

 

Based on the previous work, it was assumed that most of the 

motion during the scan can be recorded by an external camera 

[1], [2]. Since the residual movement is relatively small after 

motion correction, the reconstruction should still be a 

reasonable estimate of the density distribution (Fig. 2). This 

little-corrupted estimate was used to calculate a set of 2-D 

projections that can be directly compared with the measured 

projections. Consequently, one can try to determine the 3-D 

orientation of the reconstructed object that produces the 

optimal match between calculated and measured projections. 

When this optimal orientation is determined, the motion 

estimate is updated and a new, improved reconstruction can 

be computed. Fig 2 gives a schematic description of the 

method, the following paragraphs describe in more details 

how the object orientation was estimated for each view. 
 

 
Fig. 2. General motion estimation and correction scheme. 
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    A simple analytical relationship between the calculated and 

measured projection is derived by linearizing the problem, 

which is justified because we can assume that the residual 

motions are small. E.g., to estimate the residual rotation , a 

small rotation  is introduced to estimate the derivative of 

the projection with respect to the angle. For a 2D problem one 

obtains: 
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where 
,IP 

is 1-dimensional forward projection at view   of 

the image I , 
0  is the current rotation, 

0u  ,
0v  are the current 

translations,   is the rotation to be estimated,   is a 

known small rotation (typically 0.5 degrees). We use the 

measured projection for 
, 0 0 0( , , )IP u v    ,  

, 0 0 0( , , )IP u v   is 

the forward projection of the current image I and 

, 0 0 0( , , )IP u v    is computed by forward projection of a 

rotated version of that image. Then  is estimated as 
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A similar approach was applied to estimate the translation 

parallel to the detector, except that the measured projection 

was simply shifted to (approximately) model the effect of a 

small known translation, avoiding the need for an additional 

projection. The effect of a small translation towards the 

source produces a very small magnification [16], which was 

found to have a negligible effect on the final reconstruction. 

Therefore, this translation was not estimated. 

    Extension to 3-D is straightforward, where 3 rotations and 

2 translations have to be estimated. We found that it is 

beneficial to estimate the translations only in the very first 

iteration. The reason is that the translations are usually easier 

to estimate, compared to rotations [16], [17]. Using the 

translation-corrected reconstruction will give a reasonable 

input for the subsequent estimations. Another concern is the 

CT scanner used for the phantom measurements is a 16-slice 

system. The thin z-coverage in each view makes it extremely 

difficult to estimate the coronal and sagittal rotations if the 

translation is not correct. In the second iteration only the 

rotations are estimated, in all subsequent iterations both the 

rotations and translations were estimated. 

 After estimating the residual motions for all views, the 

motion estimate is updated and a new reconstruction (taking 

into account the updated motion) is computed using an 

iterative reconstruction algorithm. This new reconstruction is 

then used as the input for the next iteration. The whole 

iterative process was stopped, either if the projection errors 

were small enough or if the residual artifacts in the image 

were judged to be negligible. 

 

B. Real scan experiment 

 

The 3D Hoffman brain phantom, which contained air inside 

(instead of the usual water) was used in the experiments. The 

experiment was performed in the Department of Nuclear 

Medicine and Ultrasound at Westmead Hospital, on a 

Siemens Somatom Sensation 16 (Siemens Medical Solutions 

USA, Knoxville, TN).  Some parameters of the spiral-CT 

scanner are listed below: pitch 1.0; tube voltage 120 kVp; 

tube current 150 mAs; rotation time 0.5 second; angles per 

rotation 1160; collimation 160.75 mm.  

An optical motion tracking system (Polaris Spectra, 

Northern Digital, Waterloo, Canada) was placed at the rear of 

the scanner (Fig. 3). The phantom was placed off-center on 

the curved bed and held in place with a wedge. During the 

scan, the wedge was removed by pulling a string from outside 

the room. The phantom then started rolling left and right on 

the bed to finally come at rest at a stable position at the center 

of the bed. The 6 degrees of freedom of the motion of the 

phantom are shown in Fig. 4 relative to its pose at the start of 

the scan. The figure illustrates the oscillatory nature of the 

motion, including rotations of at least 10⁰ about all axes, and 

translations of up to 103 mm. 

We used a maximum likelihood reconstruction algorithm 

for transmission tomography (MLTR) with motion correction 

[1], [18] as the reconstruction algorithm. We ran 6 iterations 

for each reconstruction, while the number of subsets was 

selected as 80. The bed projections were subtracted from the 

measured projections beforehand. Reconstruction voxel size 

was 1.5 1.5 1.5 mm. The (back)projector ray tracing used 

the Joseph interpolation [19]. To accelerate the calculations 

adjacent detectors were averaged and treated as a single larger 

detector, reducing the number of sinogram columns by a 

factor 2, and the reconstructed image was reduced to reduce 

the number of zero background pixels that had to be 

reconstructed. The object was centered in the reconstructed 

space for every new reconstruction. 

For 3D helical CT, the first and last slices of the 

reconstructed image may suffer from artifacts due to the long 

object problem. To avoid this, the helical scan covered a bit 

more than the entire object and no motion was estimated for 

the first and last 10 planes. 

 

 
 

Fig. 3. Motion tracking setup for a CT on a Siemens Biograph 16 

PET/CT scanner. This figure is from [20]. 



 

 

 

 
Fig. 4. Rotation and translation of the recorded oscillatory motion. 

    The motion estimates were median filtered (by median 

filtering each component independently) to remove outliers. 

We attribute the presence of these outliers to the small axial 

field of view of the CT detector (16 slices), which may cause 

errors in estimating the axial translation. Such an error in turn 

adversely affects the estimates of the other components of the 

motion. 

III. RESULTS 

 

The motion estimation was done for 6 global-iterations.  We 

did not run too many iterations because the visual 

improvement was almost invisible after 6 iterations, and the 

reconstruction time per iteration of our non-optimized 

research code is rather long (~6 hrs). Also, because of the 

high rotation speed, we estimated the motion every 4
th

 

projection view, followed by a linear interpolation between 

those views. The recovered motion and image are shown in 

Fig. 5, and Fig. 6 respectively. The image quality is 

significantly improved compared to the image before 

correction for residual motion: sharper resolution in 

transaxial view, less artifacts in coronal and sagittal views. A 

decreasing trend in projection error with increasing iteration 

number can be seen in Fig. 7. 

 

     

        

     
 

Fig. 5.  Recovered residual motion after 6 global-iterations. 

 
 

 
 

 
Fig. 6. Selected transaxial, sagittal and coronal planes, before and 

after correction for residual motion. 

 

 
Fig. 7. Absolute value of the difference between measured and 

updated projections, as the global-iteration number increases. 

 

IV. CONCLUSION 

The phantom experiment was performed with a 16 slice CT, 

while most of the clinical CT scanners nowadays have more 

detector rows. Simulations with 40-slice and 128-slice CT are 

currently ongoing. The performance is expected to improve 

for a higher number of detector rows. 

We have not shown any simulation results from motion 

estimation under noisy projection conditions. Although the 

real data study has confirmed the noise tolerance of the 

proposed method to some extent, a more rigorous analysis of 

the effect of noise on the image recovery is required.  

The computation time is fairly important when translating 

a data-driven motion correction technique into clinics. The 

vast number of CT views in clinical scans results in a huge 

computing load. The rough time per iteration in our real data 

study was 6 hours for reconstruction and 1 hour for motion 
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estimation. To accelerate the reconstruction, we reconstructed 

a region-of-interest instead of the full FOV, and we rebinned 

the detectors with a factor of 2. Further acceleration will be 

necessary, e.g. by developing an OpenCL implementation to 

obtain parallel processing on GPU and/or CPU. 

In both 3D simulation and real data studies, we used the 

assumption that the motion consists of a large measured 

motion and a small unknown motion. This matches the 

objective that we want to eliminate the residual motion which 

remains after the motion correction based on optical motion 

tracking.  However, most of the motion during the CT scan 

will not be as dramatic as in Fig. 4. The proposed method can 

be directly used when the motion during the scan is relatively 

small across all the views. Evaluation of the performance of 

the method for larger motions is ongoing. 
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