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Abstract

Rigid motion correction for head CT imaging

The invention of X-ray computed tomography (CT) is considered as an im-
portant event in clinical medicine. CT provides an unprecedented way to vi-
sualize the internal human anatomy non-invasively. The reconstructed three-
dimensional (3D) image from a scan facilitates many clinical applications, in-
cluding diagnosis, treatment planning and surgery guidance, etc. In terms of
design, current medical CT scanners can be categorized into two types: clini-
cal multi-row CT and cone-beam CT, each has its own specific applications.
As related hardware and software technologies are advancing, CT imaging is
expected to continue playing an important role in clinical medicine.

Reconstruction is the process of recovering the 3D attenuation distribution
of the scanned object from measured data. In order to ensure artifact-free
reconstruction, the measured data must provide sufficient information. This
associated condition is called data-sufficiency condition in CT imaging. The
development of a new reconstruction algorithm for a specific CT geometry often
involves such condition. There are two classes of reconstruction algorithms,
analytical reconstruction algorithms and iterative reconstruction algorithms.
An analytical algorithm applies an inverse acquisition model to the measured
data, based on the derived mathematical relationship between measured data
and scanned object. Filtered back projection (FBP) algorithm is an example
of the analytical reconstruction algorithms and its variations are implemented
in many commercial scanners. One advantage of FBP is that it is simple
to be implemented and robust in many applications. However, when a scan
is far away from the ideal condition (e.g. with large cone angle, low dose,
metal implants, etc.), FBP-type algorithms may introduce artifacts into the
reconstructed image, which may result in an image quality which is not suitable
for further clinical applications.

Another type of reconstruction algorithms are the iterative reconstruction algo-
rithms, which have been receiving lots of attention in research and clinical fields
in recent years. In an iterative algorithm, computed projections are generated
by applying a forward acquisition model on the current image estimate. When
reconstructing an image, instead of applying a single step inversion like in a
FBP-type algorithm, an iterative algorithm tries to approach the true represen-
tation of the object by imposing the data-consistency between the computed
projections and measured data in a numerical way. By doing so, the image
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Abstract

update is improved at every iteration. The forward acquisition model used in
the algorithm is better than an analytical inverse acquisition model, in terms
of the ability to model the physical processes (noise, scattering, motion etc.)
during a scan. On the other hand, iterative reconstruction often involves repe-
titive forward and backward projection operations. Nowadays the size of the
CT data are huge due to the requirements of the large field-of-view (FOV) and
the high resolution of a reconstructed image. Significant computational power
is often needed when using an iterative algorithm to reconstruct a clinical CT
image. As a result, acceleration of iterative reconstruction is of great interest
to reduce the waiting time of radiologists and physicians.

A normal reconstruction process assumes that the scan conditions are ideal.
However this often cannot be guaranteed in a real scan, which is subject to
various perturbations. Incorrect handling of the deviation between the ideal
and real condition often results in artifacts in a reconstructed image. A com-
mon cause of such a deviation in CT head imaging is patient motion. Many
efforts have been made to prevent patient head movement during a CT-scan.
For example, current state-of-art scanners can rotate very fast (down to 250
ms/rotation), and the fast image acquisition “freezes” most of the head mo-
vement. Also, many constraint devices, e.g. head supports, are used to prevent
the patient from moving. Nevertheless, artifacts or resolution loss are still ob-
served in many clinical images, especially in those non-collaborative patients
(e.g. with mental diseases or children). Sometimes a repeat scan is required to
obtain an artifact-free image, which inevitably increases the radiation dose to
patients.

Motion correction is of general interest in CT imaging. Motion correction met-
hods can be categorized into two groups. The first group requires the motion
information, and consists of motion acquisition and motion compensation pro-
cesses. Specifically, motion acquisition derives the motion information from
reference images, surrogate signals or from the data themselves. Motion com-
pensation compensates the motion during a reconstruction process. The second
group is based on image-processing techniques, and corrects the motion without
prior knowledge of the motion. Based on what prior information is available,
one can choose the appropriate approach to perform the motion correction.
For example, Kim et al. (2015b) acquired the rigid head motion during a scan
using optical tracking techniques. The acquired motion then was compensated
during an iterative reconstruction process.

In this thesis, we proposed an approach to reduce the rigid motion artifacts in
CT scans without the usage of tracking. We focus on the helical head CT scans,
where the movement of the head can be modelled as rigid motion. The proposed
approach only requires the measured data as the available information. Since
the acquisition time of a single view is extremely short, the motion in a single
view is negligible compared with the resolution of the CT. Because of that we
assume the position of the scanned object in one view can be represented with
one single pose. This indicates that the poses of the object may be different
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for each projection view. Consequently, a rigid transformation representing the
relative pose for each view can be estimated. With this intermediate estimated
motion, a motion-compensated reconstruction can be performed. The motion
and reconstructed image can be updated alternately within a multi-resolution
scheme, until an optimal motion estimate is found. The final compensation can
be performed in a fine-resolution reconstruction process with acceleration. The
proposed approach has been validated in various studies and the image quality
was improved substantially compared with the uncorrected ones. The proposed
approach was also extended to the rigid motion correction for dental cone-beam
CT scans. One important difference between a dental cone-beam CT scan and
a helical CT scan is that a cone-beam scan often has limited transaxial FOV.
We have modified the proposed method according to this difference. The new
method was validated in both simulations and a phantom study. We also
pointed out that the approach would fail in cases where non-rigid motion is
present.

Sometimes patient movement can cause another problem in a CT-scan, which
is data-insufficiency. Assuming the existence of ideal and continuous data, sa-
tisfying the data-sufficiency conditions would imply that the trajectory of the
source (and the detector) generates data that are sufficient for exact recon-
struction. Or in other words, the data ensures that the reconstruction problem
has a unique solution and its estimate is stable. Data-sufficiency has mostly
been studied for untruncated projections. However the results do not apply
for a helical CT scan as it is always truncated in the axial direction (so-called
“long object problem”). It has been shown that under certain conditions which
are usually satisfied in clinical scans, the data produced with a helical CT tra-
jectory are sufficient (Danielsson et al. 1997; Tam et al. 1998). However, in the
presence of motion, an effective trajectory is created with respect to the pa-
tient. This new effective trajectory differs from the intended helical trajectory,
and no longer guarantees producing sufficient data for reconstruction. Data-
insufficiency may create artifacts in a reconstructed image, and whether that
happens or not depends on the scanned object. Induced artifacts are funda-
mental and cannot be corrected unless additional information is provided. It
would be useful to identify these artifacts from other artifacts which are able
to be corrected.

Conventional approaches assessed the global sufficiency condition for an un-
truncated source trajectory. In this thesis we proposed a measure to quantify
the degree to which the data-sufficiency condition is violated at local level,
for any arbitrary source trajectory. The proposed approach is specific: voxels
found to violate local sufficiency condition definitely pose a reconstruction pro-
blem. The proposed approach is independent from the choice of reconstruction
algorithm. We have verified the measure in the cases where severe rigid motion
and/or detector truncation exist. In all cases, the measure indicated the regi-
ons for which insufficient data had been acquired and correctly predicted the
regions which suffer from reconstruction artifacts. However, the method does
not have perfect sensitivity: we show that in special cases, the local sufficiency
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condition is not violated, although the acquired data are not sufficient for exact
reconstruction.
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µ attenuation coefficient
µk attenuation image at kth iteration
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Is number of photons after attenuation
ds distance photon beam travels
θ rotation angle
FT1 1D Fourier transform
FT 2

−1 2D inverse Fourier transform
(x, y) 2D world coordinate system
(r, s) 2D polar coordinate system
f(x, y) 2D object function
p(r, θ) 2D projection at θ

f̂(x, y) 2D backprojection
F (θ, ω) 2D Fourier transform of f(x, y)
Pθ(ω) 2D Fourier transform of p(r, θ)
p′(r, θ) 2D filtered projection
f(x, y, z) 3D object function
p(β, γ, v) 3D projection at θ
g(r) parallel-beam ramp filter
g′(γ) come-beam (curved detector) ramp filter
W1 pre-weighting factor in FDK
W2 backprojection weighting factor in FDK
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Chapter 1

Evolution of X-ray CT

Wilhelm Röntgen discovered the X-rays in 1895 and he was awarded with the
Nobel Prize in physics in 1901 for that. Soon this discovery caught significant
interest in the medical field, since X-rays were proven to have the capability
of visualizing the human anatomy in a non-interventional way. Although this
was an important breakthrough, X-ray imaging only provided a single two-
dimensional (2D) projection of the three-dimensional (3D) irradiated object.
The acquired image lacked information on soft tissue and low-attenuating or-
gans. Later, some researchers proposed an improved X-ray system to overcome
the limited contrast of the measured projection. The idea is that, by moving
the X-ray source and/or the detector, one can acquire multiple 2D projections
of the object at different positions. Then these projections can be combined by
shifting them such that contributions from a particular image plane are always
accumulated at the same position, whereas the contributions from other planes
are averaged out. This provides some depth information, which improves the
visualization of the low contrast region. The rationale behind it led to the de-
velopment of breast tomosynthesis today. However, the planes above or below
the central plane are always blurred in the computed image.

Cormack and Hounsfield were awarded the Nobel Prize in medicine for the
invention of computed tomography (CT) Imaging. CT eliminates the blurring
created by superimposing different projections. The excellent quality of the
CT image makes it one of the most commonly used medical imaging modalities
nowadays. Fig. 1.1 demonstrates how the first generation CT scanner works:
the X-ray tube emits a pencil beam at one position, which is recorded by a
single detector; to scan the whole object at one angle, the detector translates
together with the source in one direction, generating a 1D projection (profile);
after that the system rotates to several different angles (from 0◦ to 180◦),
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and the above acquisition process is repeated at these sampled angles. The
resulting data are a set of 1D projections acquired at a series of acquisition
angles, uniformly sampled over 180 degrees. By reconstructing an image from
this measurement, Hounsfield obtained the very first image of the human head
anatomy.

Figure 1.1: Four generations (from (a) to (d)) of CT scanners.

One problem with the first generation CT system is the relatively long acqui-
sition time, e.g. 4-6 mins for a head scan. Second generation CT improves this
by introducing a narrow fan-beam, instead of the pencil-beam, with increased
number of detectors (Fig. 1.1b). Still the fan angle is small (∼10◦) and the
X-ray tube and detector array need to be translated to cover the object before
the gantry is rotated. A major improvement was made in the third generation
CT, with a substantially larger fan angle to further increase the scan coverage
of one exposure (Fig. 1.1c). As a result, the translation of the source and
detector is no longer necessary, so the acquisition time of one scan is reduced
significantly. Fourth generation CT differs from the third generation one in
the design of the detector array, but not in the X-ray source (Fig. 1.1d). The
detector array in this generation forms a ring with up to 5000 single elements
remaining stationary during a scan, while the X-ray source still rotates in a ci-
rcular trajectory. The fourth generation CT reduces the possible artifacts due
to the misaligned position of the moving detector. Most of the medical X-ray
CT scanners today are based on the concept of the third generation CT.

One of the most commonly used scan procedures is the helical scan, which was
introduced in early 1990s. Before its appearance, large volumetric data were
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Chapter 1. Evolution of X-ray CT

acquired in so-called step-and-shoot mode, which contains a bed movement
phase and a data acquisition phase using a circular trajectory. In contrast,
helical scanning allows simultaneous data acquisition while the bed is moving.
The gantry rotation and the bed movement form a virtual X-ray trajectory
with helical shape, which guarantees the full coverage of the scan region (Fig.
1.2a).

Figure 1.2: Left: multi-row clinical CT, right cone-beam CT.

Figure 1.3: Increased axial coverage of the multi-row CT detector, makes it
transit to a full cone-beam scanner.

In 1990s multiple-row CT was invented, thanks to advanced detector technolo-
gies. As a consequence, the axial coverage of a CT has been increasing steadily
(Fig. 1.3). With increasing axial extent of the detector, CT acquisition time
can be shortened, hence reducing the possibility of motion artifacts and ena-
bling dynamic imaging of a target organ without table movement. Aside from
clinical multi-row CT, cone-beam CT is another scanner that is commonly used
in medical imaging (Fig. 1.2b). All micro-CT and C-arm CT scanners belong
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Table 1.1: Typical state-of-art scanning parameters of clinical multi-row CT
and cone-beam CT systems

Clinical CT cone-beam CT
Detector matrix size 920×64 1024×1024
Detector pixel size 0.3 mm 0.15 mm
Contrast 3 HU 30 HU
Dynamic range 20 bit 10 bit
Dose efficiency 90 % 50 %
Lowest rotation time 0.25 s 3 s
Frame rate 6000 fps 30 fps
X-ray power 120 kW 20 kW
Peak voltage 70-150 kVp 30-120 kVp

to this category. Movement trajectory of the source is often circular but could
be more flexible, e.g. helical or other irregular shapes, depending on the par-
ticular application. Similar to the multi-row CT, cone-beam CT has a large
axial detector and cone angle could be up to 40-60◦. The main difference is
the detector technology: cone-beam CT uses flat-panel based, while clinical
multi-row CT uses dedicated curved detector. A summary of the technical dif-
ferences between a common clinical multi-row CT and a common cone-beam
CT is listed in Table 1.1.
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Chapter 2

X-ray physics

X-ray physics describes how X-rays are generated and measured in a CT scan-
ner. In this section we will discuss following physical processes: (1) X-ray
generation, (2) X-ray interactions with matter, and (3) X-ray detection.

2.1 Generation of the X-ray

Medical X-rays are generated in a vacuum tube which contains one anode and
one cathode (Fig. 2.1). Electrons are emitted from a cathode filament, which
is heated by a current to reach beyond the binding energy of these electrons
on the cathode. The formed electron beam is accelerated towards the anode
by the tube voltage between the anode and cathode. A typical acceleration
voltage is chosen between 25-150 kV for the diagnostic imaging purpose. The
focus spot of the electron beam on the anode is controlled by a magnetic field
- a control process which is referred to as electron optics (Rose 2008).

Deceleration happens when the electron beam reaches the surface of the anode.
The energy carried by electrons is released in several ways during the decele-
ration (Fig. 2.2):

(1) Heat production - direct collision between the electron and outer shell
electron of the anode. The full energy is transferred to the outer shell electron
and gradually emitted as heat.

(2) Bremsstrahlung - interaction between the electron and the nucleus. The
path of the electron is bended around the nucleus and the loss of kinetic energy
is emitted as a photon.

(3) Characteristic radiation - direct interaction of a fast electron with an inner
shell electron of the anode. The inner shell electron is emitted out and an outer
shell electron fills the original position, during which a photon is emitted.
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2.1. Generation of the X-ray

Figure 2.1: A typical medical X-ray tube.

Figure 2.2: Several energy release processes might happen when an electron
arrives at the anode: (a) heat production; (b) bremsstrahlung; (c) characteristic
effect; (d) direct collision.

7
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(4) Direct electron-nucleus collision - A electron is scattered without energy
loss, and continues travelling in a different direction until next interaction hap-
pens.

Considering the tube acceleration voltage, direct electron-nucleus collision hardly
happens in X-ray CT imaging. In fact emission of the X-ray photons are mainly
due to a combination effect of (2) and (3), and the bremsstrahlung effect con-
tributes more than characteristic radiation does (at least for the material com-
monly used in medical X-ray tube, e.g. tungsten). The emitted X-ray photons
from the tube are distributed within a continuous energy range, and a typi-
cal energy spectrum is shown in Fig. 2.3. The reason of the presence of this
continuous distribution is that, bremsstrahlung can have any energy, ranging
from zero to maximum kinetic energy of the electron, depending on the degree
that the electron is affected by the nucleus (Fig 2.2b). The maximum kinetic
energy of the electron is determined by the tube voltage between the anode
and the cathode. The number of the emitted X-ray photons is determined by
the cathode current.

Figure 2.3: X-ray spectrum of a tungsten anode (without filtering) at tube
acceleration voltages of 150 kVp (peak kilo-voltage).

2.2 Interaction between X-ray and matter

After emission, the X-ray photons travel towards the object and some of them
interact with the matter when passing through that object. As a result, the
number of photons measured by the detector is less than the number emitted.
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2.2. Interaction between X-ray and matter

This process is often called attenuation of the X-ray photons. The attenuation
coefficient defines how easy a photon beam penetrates the object. The linear
attenuation coefficient describes the probability of attenuation per unit length,
and it depends on the photon energy and the material being traversed (Fig.
2.4a). The mass attenuation coefficient is the linear attenuation coefficient
divided by the material density. If we are able to obtain the attenuation value
for a particular energy at one voxel, we would have useful (but incomplete)
information of which material is located at that pixel.

2.2.1 Beer-Lambert’s law

Figure 2.4: (a) Energy dependent linear attenuation coefficient for bone, water,
and calcium. (b) X-ray beam travels through a slice of material with attenua-
tion coefficient µ.

Here a mathematical expression of the photon attenuation is given. First, let us
see a simple case where all emitted photons have the same energy. In this case
a monochromatic X-ray beam propagates over a distance ds through the object
(Fig. 2.4b). The linear attenuation coefficient µ is defined as the fraction of the
X-ray beam attenuated per unit distance. The intensity (number of photons)
before the attenuation is I, after the attenuation is I + dI. The change of the
intensity can be written as:

dI = −Iµds (2.1)

This gives:

dI

I
= −µds (2.2)

9



Chapter 2. X-ray physics

Integrating both sides:

Is = I0 · exp(−
∫ s

0

µ(s) · ds) (2.3)

known as Beer-Lambert’s law , which is the fundamental of X-ray CT ima-
ging. I0 is the number of photons that would be detected if no attenuation
was present, Is is the number of photons after attenuation along path s. For a
real, polychromatic X-ray source, the integration on the right hand side must
be over all energies:

Is =

∫ Emax

Emin

I0(E) · exp(−
∫ s

0

µ(E, s) · ds)dE (2.4)

2.2.2 Interaction with matter

Beer-Lambert’s law describes the mathematical process of X-ray photon attenu-
ation, which can happen in several forms of physical processes, distinguished by
the changes to the energy or travelling direction of a photon (Fig. 2.5):

(1) Photoelectric effect – at low energies, the entire energy of the photon is
absorbed by an atom, and an inner shell electron is emitted from the atom as
a photoelectron. The resulting vacancy is filled by an electron from an outer
shell, during which a characteristic X-ray fluorescence photon is generated.
The closer the photon energy is to the K-shell binding energy, the more likely
photoelectric effect is going to happen.

(2) Compton scattering – at middle energies, part of the photon energy is
lost during the interaction between the photon and the outer shell electron.
As a consequence, a scattered photon with less energy than incoming photon
propagates in a different direction. The energy difference is consumed to emit
the outer shell electron from the atom. A similar phenomenon is Rayleigh
or Thomson scattering, during which there is no energy loss for the scattered
photon. Compton scattering can be well modelled as a collision between the
photon and a loosely bounded electron, Rayleigh scattering can be modelled
as a collision between the photon and the entire atom.

(3) Pair production – at high energies, the photon may interact directly with
the nucleus, generating a positron and an electron. The positron then travels
a short distance in the matter and interacts with another electron, producing
two 511 keV photons which are emitted in opposite directions. This process is
called annihilation.

Photoelectric and Compton scattering are the main causes of attenuation in
medical X-ray imaging. A composition of all these effects on the mass attenu-
ation coefficient of water is shown in Fig. 2.6.
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2.2. Interaction between X-ray and matter

Figure 2.5: Possible X-ray photon interaction processes with the matter: (a)
photoelectric absorption; (b) Compton scattering; (c) pair production.

Figure 2.6: Mass attenuation coefficient of water at different photon energy
levels. Contribution from different interactions are plotted in different curves.
diagnostic window is in red. Plotted data are from NIST XCOM database
(https://physics.nist.gov/cgi-bin/Xcom/).
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2.3 X-ray detection

An X-ray detector measures the amount of the X-ray photons hitting the de-
tector. The conventional energy integrating detector does this in an “indirect”
way by measuring the output of interactions between the photons and the de-
tector, i.e. Compton scattering and Photoelectric effect (Fig. 2.7a). A typical
process of how an integrating detector measures photons is illustrated below:
(1) X-ray photons travel into the scintillator and transfer part of their energy
into kinetic energy of electrons; (2) the kinetic energy of these electrons excites
a large number of bound electrons; (3) the excited electrons return to their
ground state, producing light photons in the scintillator; (4) in the photodi-
ode, the light photons convert to pairs of electrons and holes which create a
measurable electric current; (5) analog-to-digital (A/D) converters yield the
final measured values, which are proportional to the total energy deposited in
the detector. Most of the multi-row CT detectors, and many cone-beam CT
detectors use such detectors to perform “indirect” conversion from photons to
charge.

One disadvantage of the integrating detectors is that they usually produce very
complicated measurement statistics due to the numerous sources of variati-
ons, which originate from the above five steps. Some cone-beam CT detectors
utilize “direct” conversion, by replacing the scintillator and the photodiode
in an integrating detector with an array of X-ray photosensor (Fig. 2.7b).
The X-ray photosensor has the ability to convert the X-ray photons directly
to electrical signal, hence avoids multiple random processes that happen in a
scintillator.

Figure 2.7: (a) “Indirect” conversion detector used in clinical multi-row CT and
some cone-beam CT. (b) “direct” conversion detector used in some cone-beam
CT.

Based on the “direct” conversion detector, a new design of detector named
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2.3. X-ray detection

Figure 2.8: (a) Photon counting detector; (b) detected signals are grouped to
different bins with different photon energies.

photon-counting detector is emerging rapidly in the medical imaging field.
Inherited from the “direct” conversion detector, it can convert X-ray photons
directly to charges to be collected by electric circuits. Furthermore, it has the
ability to detect each photon (and its estimate energy) individually with the
help of fast read-out circuits. An individual photon is detected by checking
if the induced charge is above a certain level (Fig. 2.8). Photons at different
energy levels can be categorized into different bins with a set of predefined
thresholds. The measurement in each bin can be assumed to follow a Poisson
distribution provided the dead time losses are modest (Nuyts et al. 2013).
Compared with an integrating detector, a photon-counting detector has better
capability in distinguishing multiple materials even with lower radiation dose
(Polster et al. 2016). It also provides a wider dynamic range, thanks to the
measurement of the energy of the individual photons. Two downsides of the
photon counting detector are: (1) spectral response may not be perfect as the
detector can read one high energy photon as multiple low energy photons; (2)
pulse pileup effect may cause loss of photons due to the limited count rate
(Kappler et al. 2014). Given that the detector technology is still advancing,
these issues will likely be solved in the future. More discussion about the
photon-counting detector can be found in (Taguchi et al. 2013).
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Reconstruction

Image reconstruction is the process of recovering the representation of the
object from the data measured by the detector. In this section, we will (1)
introduce the key components of a reconstruction implementation – forward
and backprojection; (2) introduce a precondition for an exact reconstruction –
data-sufficiency; (3) review several analytical and iterative reconstruction al-
gorithms currently used in clinics and research field; (4) discuss issues about
the acceleration of an iterative reconstruction.

3.1 Projection and backprojection

In this section we first review two key concepts in a reconstruction process -
projection and backprojection.

3.1.1 Projection

Beer Lambert’s law describes the attenuation law of an X-ray passing through
an object over a certain distance. Here we define the process of projection . Let
us consider a 2D object f(x, y) which is irradiated by a set of 2D parallel rays
(parallel-beam geometry in Fig. 3.1). A second coordinate system (r, s) can
be defined, and its relationship with (x, y) coordinate system can be described
as:

[
r
s

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r
s

] (3.1)
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3.1. Projection and backprojection

At θ, if we apply a line integration of the object along all parallel lines, a density
profile of the object is obtained:

p(r, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − r)dxdy (3.2)

According to Eq. 3.1, this line integral at θ can be expressed in the coordinate
system (r, s):

p (r, θ) =

∫ ∞
−∞

f (r cos θ − s sin θ, r sin θ + s cos θ)ds (3.3)

Figure 3.1: The projection process of an object in a parallel-beam geometry
at projection angle θ. Note the existence of two coordinate systems (x, y) and
(r, s).

Above equation describes the projection process in 2D, and the resulting profile
p(r, θ) is called projection at angle θ. The projection process can be repeated
for multiple angles in a parallel-beam geometry in Fig. 3.1, generating a set
of 1D projections. Fig. 3.2 is an example showing a point and its projections
across 360◦. Note the sinusoid shape of the vertically stacked projections along
angles, and because of that the 2D image by stacking the 1D projections is
often called sinogram in tomography. Fig. 3.3 is an example of a 2D simulated
Shepp-Logan phantom and its sinogram, which effectively can be viewed as a
superposition of multiple sinusoids from projections of multiple points. In 2D,

15



Chapter 3. Reconstruction

Figure 3.2: An example of (a) a point, (b) its sinogram and (c) its backpro-
jection, which recovers a blurred representation of the point. The projection
p(r, θ) in (b) is essentially a 2D image, where each row represents the projection
at a particular angle. Note that the projection if the point in (a) contributes a
sinosodial pattern in this image (as can be easily verified with Eq. 3.2).

Figure 3.3: A 2D Shepp-Logan phantom and its sinogram.
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3.1. Projection and backprojection

both X-ray transform and Radon transform describe above process of genera-
ting projections at all angles. But in general, the two transforms are different
- the X-ray transform produces the set of all line integrals, while the Radon
transform produces a set of integrals over all hyperplanes.

The integral in Eq.3.3 assumes continuous models for object and detector repre-
sentation. However, the computation of a projection process usually involves
discretizing a real object in pixels. Also a detector is always discrete in real
life. Hence, a discrete form of Eq. 3.3 is of great interest:

pi =
∑
j

aijfj (3.4)

where j is the index over image voxels (x, y), i is the index over sinogram
pixels (r, θ), aij represents the intersection length of projection line i with
voxel j.

3.1.2 Backprojection

The projection process maps a 2D object f(x, y) to sinogram p(r, s), consis-
ting of all line integrals through the object. Backprojection is the adjoint
operation of projection, which is defined as:

f̂(x, y) =

∫ π

0

p(x cos θ + y sin θ, θ)dθ

=

∫ π

0

p(r, θ)dθ|r=x cos θ+y sin θ

(3.5)

In the parallel-beam geometry shown in Fig. 3.1, above equation “smears”
all projection values back to the volume along the same projection lines used
to produce the sinogram. Unfortunately backprojection does not recover the
exact representation of the object but gives a blurred version of the object (Fig.
3.2c).

Again we are interested in a discrete version of Eq. 3.5, which is:

bj =
∑
i

aijpi (3.6)

Backprojection is fundamental to all tomographic reconstruction algorithms.
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3.2 Data-sufficiency

A precondition for an exact reconstruction is the data-sufficiency condition.
Before designing a reconstruction algorithm for a specific imaging application,
it is useful to determine whether the available data are sufficient or not for exact
reconstruction of the attenuating object. Here, “exact reconstruction” means
that the reconstruction problem has a unique solution and a stable estimate
of that solution can be computed from noisy data. Orlov (1975) derived a
data-sufficiency condition in parallel-beam tomography. Tuy (1983) extended
it to a data-sufficiency condition in cone-beam tomography. Later Metzler et
al. (2003a) identified the geometrical equivalence between Orlov’s and Tuy’s
sufficiency conditions. Note that above conditions assume that all projections
at all source positions are untruncated, i.e. all projection lines that intersect
the object also intersect the detector.

An example acquisition scheme that violates the data-sufficiency condition is
the popular circular cone-beam scan (Fig. 3.4a), which never provides sufficient
data for an exact reconstruction. Tuy’s condition states that, to reconstruct an
object exactly, “there should exist at least one cone-beam source position on
every plane that intersects the object”(Tuy 1983). For the cone-beam geometry
in Fig. 3.4a, above statement is true only for the points within the source plane
(i.e. the plane containing the circular source trajectory), but not for ones
outside that plane. As a result, exact reconstruction is only possible within the
source plane, and indeed, so-called cone-beam artifacts are typically observed
for planes away from the source plane. On the other hand, Tuy’s condition is
satisfied if in addition to the circular trajectory, the source also moves along a
line (Fig. 3.4b). If that line is long enough, then “all planes intersecting the
object contain at least one cone-beam source position”. For the same reason,
a tilted circles source trajectory also satisfies data-sufficiency condition (Fig.
3.4c).

Figure 3.4: Illustration of three different source trajectories: (a) circle, (b)
circle and line, (c) titled circles. The red cylinder represents the object, the
source (red asterisk) moves along the solid black lines to acquire the projections
of the object. We assume the detector is infinitely large hence no truncation
exists during every exposure.
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3.3. Analytical reconstruction

Danielsson et al. (1997) and Tam et al. (1998) first extended the data-sufficiency
condition to axially-truncated data in a helical scan. Because of the limited
axial detector extent, helical cone-beam data are truncated in all projection
views along the axial direction (rotation axis, Fig. 3.5). Tam and Danielsson
independently proved that the minimum data required in each view for exact
reconstruction is the set of projection values within a constant region. Noo
et al. (2004) and Defrise et al. (2006) first derived a data-sufficiency condition
for transaxially-truncated data from a scan with reduced fanangle. It was
proven that a region-of-interest (ROI) can be reconstructed exactly from the
truncated data if all integrals along lines intersecting the ROI are measured,
and if that ROI also includes part of the background surrounding the object
(Fig. 3.6a). Continuing from those results, Ye et al. (2007), Courdurier et
al. (2008), Kudo et al. (2008) and Yu et al. (2009) derived a data-sufficiency
condition for the interior problem, where the ROI is strictly within the object
support. Assuming all line integrals are measured within an interior ROI,
that ROI can be reconstructed exactly if the image values are known a priori
in a finite subregion, or if the ROI itself is piecewise constant. All above
sufficiency conditions can be viewed as being valid only for several special source
trajectory shapes. However, there is currently no data-sufficiency condition
general enough to deal with an arbitrary source trajectory shape. Development
of a general sufficiency condition is still under investigation.

Another research direction is to investigate the relationship between the data-
sufficiency and the degree of data sparsity. Compressed sensing has been shown
to enable an acceptable reconstruction from sparsely sampled data (Sidky et al.
2008). Empirical studies showed the existence of a relation between the sparsity
and data-sufficiency but yet a theoretical explanation is needed (Jørgensen et
al. 2015, 2013).

3.3 Analytical reconstruction

After discussing the data-sufficiency condition, we will introduce several recon-
struction algorithms in this and next sections. These algorithms are divided
in two categories: analytical reconstruction algorithms and iterative recon-
struction algorithms. These two categories mainly differ in two aspects: (1)
an analytical reconstruction algorithm is based on the mathematical inversion,
and gives a one-step solution. On the other hand an iterative reconstruction
algorithm is based on the numerical inversion, and updates the image in an
iterative way; (2) analytical reconstruction is based on a continuous represen-
tation of the object and the sinogram, discretization is only used to implement
the algorithm. In contrast, an iterative algorithm starts from a discrete re-
presentation of the object and the sinogram. We will first introduce several
analytical algorithms in this section.
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Figure 3.5: A scan setup in helical cone-beam geometry. The source S runs
from βmin to βmax, the pitch of the helix is defined as the table increment per
rotation divided by the beam collimation. We define a Pi-line (in red) as a
segment with two endpoints located on the helix within one pitch. Tam et al.
(1998) and Danielsson et al. (1997) proved that measurement in half turn of
the helix would produce sufficient data for exactly reconstructing a voxel on the
Pi-line. They also proved that there is one and only Pi-line through any voxel
within the helix. In other words if no transaxial truncation is allowed, a set
of Pi-lines would cover the whole object. Hence the data-sufficiency condition
is satisfied. The Tam-Danielsson window (shaded region) is defined as the
detector region in between projections of all Pi-lines within two consective
turns of the helix.

Figure 3.6: Two 2D data-sufficiency problems with transaxial truncation. The
support of the object is bounded by the solid curve, and only points inside the
dashed circle are projected onto the detector at every angle. Exact and stable
reconstruction can be obtained within shaded ROI when either (a) part of the
ROI is in the background, or (b) attenuation values are known a priori in a
tiny region A, or the object inside the ROI is piecewise constant.
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3.3. Analytical reconstruction

3.3.1 Direct Fourier reconstruction

In order to avoid the blurring effect in the image from a simple backprojection
(Fig. 3.2c), we need an “exact inverse” operation of the projection. The
Fourier slice theorem , also known as the central slice theorem, describes the
mathematical relationship between an image and its projections. It provides
theoretical support for “exact inverse” operation. The Fourier transform of a
2D object is:

F (ωx, ωy) =

∞∫
−∞

∞∫
−∞

f(x, y)e−j2πωxxdx e−j2πωyydy (3.7)

According to {
ωx = ω cos θ
ωy = ω sin θ

We have

F (θ, ω) =

∞∫
−∞

∞∫
−∞

f(x, y)e−j2πw(x cos θ+y sin θ)dxdy

According to Eq. 3.1, we can replace x and y to s and r:

F (θ, ω) =

∞∫
−∞

∞∫
−∞

f(r cos θ − s sin θ, r sin θ + s cos θ)e−j2πωrdrds

=

∞∫
−∞

∞∫
−∞

f(r cos θ − s sin θ, r sin θ + s cos θ)ds e−j2πωrdr

Based on Eq. 3.3, we have the Fourier transform of a 2D object as:

F (θ, ω) =

∞∫
−∞

p(r, θ)e−j2πωrdr

F (θ, ω) = Pθ(ω)

(3.8)

This implies that the 1D Fourier transform of the parallel projection at angle θ,
equals the profile along the radial line in the 2D Fourier transform of the object
at the same angle (Fig. 3.7). This relationship is referred to as the Fourier
slice theorem. If a sufficient number of projections are measured, F (θ, ω) would
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be known at all positions in the frequency domain. According to Eq. 3.8, the
object can be exactly reconstructed by applying a 2D inverse Fourier transform
for the 1D Fourier transform of the projections. The actual implementation of
this reconstruction process includes three steps:

(1) Compute the 1D Fourier transforms of the projections at all angles, resulting
in F (θ, ω)

F (θ, ω) = FT1{p(r, θ)}

(2) Convert F (θ, ω) from polar coordinate to Cartesian coordinate in the Fou-
rier domain

F (ωx, ωy) = gridding{F (θ, ω)}

(3) Apply the 2D inverse Fourier transform to obtain the reconstructed image

f(x, y) = FT−1
2 {F (ωx, ωy)}

Above steps is often called direct Fourier reconstruction . Although this ap-
proach is straightforward, one has to convert F (θ, ω) to Cartesian coordinates
before applying the inverse Fourier transform. This involves an interpolation
process called gridding, which is sensitive to errors in frequency domain (Nat-
terer 2001).

Figure 3.7: Fourier slice theorem. The 1D Fourier transform of the projection
p(θ) equals the central profile at angle θ through the 2D Fourier transform of
the object.

3.3.2 Filtered backprojection

Another analytical reconstruction algorithm is filtered backprojection (FBP),
which can be derived from the Fourier slice theorem as well. It has the advan-
tage of avoiding the gridding in the direct Fourier reconstruction. To obtain
FBP, one first obtains f(x, y) by rewriting Eq. 3.7:
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3.3. Analytical reconstruction

f(x, y) =

∞∫
−∞

∞∫
−∞

F (ωx, ωy)ej2π(ωxx+ωyy)dxdy (3.9)

Express F (ωx, ωy) in a polar coordinate system (θ, ω):

f(x, y) =

π∫
0

∞∫
0

F (θ, ω) |ω| ej2πωrdωdθ|r=x cos θ+y sin θ (3.10)

where |ω| is Jacobian of the coordinate transform. According to Eq. 3.8,
F (θ, ω) can be replaced by a 1D Fourier transform of the projection Pθ(ω):

f(x, y) =

π∫
0

∞∫
0

Pθ(ω) |ω| ej2πωrdωdθ|r=x cos θ+y sin θ (3.11)

where |ω| can be viewed as a filtering operation, which allows high frequency
information to pass but suppresses low frequency information (Fig. 3.8). Be-
cause of the shape, we often call this filter the ramp filter. Let us define the
inner integration over ω in Eq. 3.11 as p′(r, θ):

p′(r, θ) =

∞∫
0

Pθ(ω) |ω| ej2πωrdω (3.12)

Put p′(r, θ) back to Eq. 3.11, we arrive at the fact that f(x, y) can be exactly
reconstructed by integrating the filtered projections at all angles:

f(x, y) =

π∫
0

p′(r, θ)dθ|r=x cos θ+y sin θ (3.13)

Compared with Eq. 3.5, the only difference is Eq. 3.13 filters the projection
whereas the regular backprojection does not. Hence the derived algorithm is
called filtered backprojection. An alternative to filtering the projections in
frequency domain is convolving the projections in spatial domain (Fig. 3.8),
which leads to a different implementation of FBP (Zeng 2015):
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p′(r, θ) = p(r, θ)⊗ g(r)

where g(r) = W
sin(2πWr)

πr
− sin2(πWr)

(πr)
2

(3.14)

⊗ denotes convolution, W is the cutoff frequency typically chosen to be the
Nyquist frequency. Ramp filtering or convolution can be further combined
with low pass filtering, e.g. Hann filtering, to remove the undesired noise in
the measured data.

Figure 3.8: Filtering in frequency domain equals convolution in spatial domain,
of which the kernel is the Fourier transform of the response function in the
frequency domain. More details about the ramp filtering can be found in (Zeng
2015).

Note that the FBP algorithm derived above is only valid in a 2D parallel-beam
geometry. In this thesis we are interested to derive an FBP-like algorithm that
works for a 2D fan-beam geometry with curved detector. One can choose to
rebin the fan-beam data to parallel-beam ones before the reconstruction (Her-
man et al. 1976). But a rebinning process involves interpolation which might
compromise the spatial resolution of a reconstructed image. An alternative
choice is to extend the parallel-beam FBP algorithm to fan-beam one. Fig. 3.9
shows the coordinates transformation between a parallel-beam geometry (r, θ)
and a fan-beam one (γ, β). β is the angle between the central ray of the fan
and the y-axis, γ is the angle between a ray and the central ray of the fan, fan
angle is ∆γ, R is distance between the source and the center of the rotation.
The transformation between two coordinates is:

{
θ = γ + β
r = R sin γ

(3.15)

A fan-beam FBP algorithm for geometry in Fig. 3.9b first requires adjusting
on the ramp filtering in Eq. 3.14:
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3.3. Analytical reconstruction

Figure 3.9: (a) A parallel-beam geometry and (b) a fan-beam geometry. The
detector in the fan-beam geometry is equiangular since the detector elements
are distributed uniformly along the fanangle.

g′(γ) =

(
γ

sin γ

)2

g (γ) (3.16)

where g(γ) is the parallel-beam ramp filter.

A FBP algorithm for geometry in Fig. 3.9b also requires additional weightings
to be introduced. A first weighting factor is the pre-weighting applied before
applying the ramp-filtering. A second weighting is backprojection weighting
applied during the backprojection operation. These two weighting factors have
the expression below:

W1 = cos γ

W2 =
R

(x+R sinβ)
2

+ (y −R cosβ)
2

(3.17)

After modifying the ramp filtering and introducing the additional weights, the
resulting fan-beam FBP algorithm (with curved detector) is:

f(x, y) =
1

2

∫ 2π

0

W2

∫ ∆γ/2

−∆γ/2

{(W1p(γ, β))⊗ g′(γ)}dγdβ (3.18)

In a 360◦ circular scan (2D), measured data are redundant for reconstruction.
For a parallel-beam geometry, data from a 180◦ scan is enough for a recon-
struction. For a fan-beam geometry, data from a short scan (scan view range
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[0, α], α ∈ [π+ ∆α, 2π]) is enough for a reconstruction. When reconstructing a
short scan, some proper weighting function needs to be introduced to handle the
redundancy in each projection view (Parker 1982; Silver 2000). This process is
often referred to as Parker’s weighting.

3.3.3 3D approximate reconstruction

The 2D fan-beam FBP algorithm can be extended into a 3D cone-beam one. In
a circular cone-beam geometry, we know that measured data are not sufficient
for reconstruction. For this geometry, a type of reconstruction algorithms uses
all data and accounts for the obliqueness of the projection lines by adjusting
backprojection weights. An example is the Feldkamp-Davis-Kress (FDK)
algorithm (Feldkamp et al. 1984). FDK is an approximate reconstruction al-
gorithms - as the number of modern scanner detector rows increases, their
approximate errors outside the central plane are no longer negligible.

Figure 3.10: Circular cone-beam geometry with a virtual cylindrical detector
in the center of field-of-view (FOV). R is the distance between the source and
the rotation center, R′ is the distance between the source and the voxel, r is
the fanangle increment of a perticular ray, k is the coneangle increment of a
particular ray.

We hereby describe the FDK algorithm as a representation of the 3D approxi-
mate algorithms for a circular cone-beam geometry. Let us consider the algo-
rithm for the measured cone-beam data from sources on a circular trajectory.
In the coordinate system defined in Fig. 3.10, we denote the trajectory as
R(− sinβ, cosβ). The detector is in cylindrical shape. A virtual cylindrical
detector (γ, v) is placed on the axis of rotation so that v-axis coincides with
the z-axis. The cone-beam measured data are represented as p(β, γ, v). From

26



3.3. Analytical reconstruction

Eq. 3.18, circular cone-beam FDK algorithm reconstruct f(x, y, z) by:

f(x, y, z) =
1

2

2π∫
0

W2

∆γ/2∫
−∆γ/2

{(W1p(β, γ, v))⊗ g(γ)}dγdβ

where v =
zR√

(x+R sinβ)
2

+ (x−R cosβ)
2

W1 = cos k cos γ

W2 =
R2

R′2
=

R2

(x+R sinβ)
2

+ (y −R cosβ)
2

+ (z − v)
2

(3.19)

where again W1 is the pre-weighting term, W2 is the backprojection weighting
term. In practice, circular FDK algorithm is implemented in four steps:

(1) Multiply the projections with both column-dependent weight cosγ and row-
dependent weight cosk.

(2) Apply the Parker’s weighting to the data if the scan is a short scan. For
simplicity it is not shown in Eq. 3.19.

(3) Apply the ramp filtering along each row in each projection. Often imple-
mentation is via 1D convolution along the rows in each projection.

(4) Compute the weighted backprojection from the filtered projections.

The computation of the FDK algorithm is straightforward and parallelizable.
Despite its approximate nature, FDK is found to be robust and accurate for
many clinical applications. However, as illustrated in the beginning of this
section, cone-beam artifacts are becoming a problem when the axial detector
extent becomes very large. As a result, reconstructed values will become less
trustable in planes far away from the midplane. Variations of FDK such as P-
FDK (Turbell et al. 1999) and T-FDK (Grass et al. 2000) were proposed to re-
duce these cone-beam artifacts. These variations are different in the way of the
rebinning and/or filtering directions on the measured data are defined.

Now circular cone-beam FDK can be readily extended to helical cone-beam
FDK or even a general FDK for any given geometry. We denote the helical
source trajectory as (−R sinβ,R cosβ, lpβ/2π) in the coordinate system, where
lp is the helical pitch (see Fig. 3.5). A helical FDK algorithm can be derived
based on Eq. 3.19:
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f(x, y, z) =

βz+π∫
βz−π

R2

(x+R sinβ)
2

+ (y −R cosβ)
2

+ (z − v)
2

∆γ/2∫
−∆γ/2

{(cos k cos γp(β, γ, v))⊗ g(γ)}dγdβ

where v =
(z − lpβ/2π)R√

(x+R sinβ)
2

+ (x−R cosβ)
2

(3.20)

where βz is the current view angle, v is now view-dependent due to the axial
movement of the source. Comparing Eq. 3.20 with Eq. 3.19, it is almost the
same except that the preweighting, filtering and backprojection are all perfor-
med with respect to the helix. The outer integration range is 2π, which means
that for each view only information within that range is used for reconstruction.
In fact, if we project a trajectory segment over 2π onto the detector, the pro-
jected region coincides with the region inside the Tam-Danielsson window (Fig.
3.5).

Note that above derivations are only for the data acquired with a 3D cylindrical
detector. Another common detector shape is planar. For example, the circular
cone-beam FDK algorithm for this configuration is quite similar to Eq. 3.19,
except no modification on the ramp filtering. Details about how to derive the
planar detector FDK algorithm for (both circular and helical) cone-beam data
can be found in (Turbell 2001).

3.3.4 3D exact reconstruction

Let us assume that the data-sufficiency condition is satisfied for the measured
data. Rather than using an approximate algorithm (e.g. for a helical cone-beam
geometry), a completely different strategy is to derive an exact reconstruction
algorithm to reconstruct the image. Such an algorithm is guaranteed to pro-
vide the “exact” inverse of the operator that models the acquisition process.
Three types of 3D exact reconstruction algorithms will be briefly reviewed in
this section, including Grangeat’s equation, Katsevich’s approach and backpro-
jection filtering.

In 2D parallel-beam geometry, the Fourier slice theorem describes the relations-
hip between the measured data and the object, which provides the theoretical
support for the exact reconstruction. Likewise in 3D cone-beam geometry,
Grangeat (1991) derived Grangeat’s equation which describes a relationship
between the cone-beam data (a subset of the X-ray transform) and the 3D
Radon transform of the object. With such a relationship, reconstructing a 3D
object exactly is possible and requires two steps: (1) compute the derivatives
of measured data; (2) reconstruct the image by applying 3D inverse Radon
transform to the derivatives. Grangeat’s equation was proved to be able to
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reconstruct the data acquired from many source trajectories (Caroline et al.
1994; Defrise et al. 1994). As a type of direct Fourier reconstruction algo-
rithms, computation complexity of Grangeat’s equation is often very high for
a realistic problem.

Katsevich's approach (Katsevich 2002) is a general reconstruction appro-
ach for data acquired along many source trajectories. This algorithm is a type
of FBP algorithm and of which the implementation is considered to be more
efficient than the implementation of Grangeat’s algorithm. Here let us con-
sider the helical cone-beam geometry in Fig. 3.5 and recall the definition of
the Pi-line and Tam-Danielsson window. The implementation of Katsevich’s
algorithm consists of four steps in such a geometry (Noo et al. 2003): (1) com-
pute the derivatives of measured data with respect to the rotation angle; (2)
for each voxel, find the corresponding Pi-line and determine the backprojection
integration range over the rotation angle; (3) for each projection, perform 1D
Hilbert filtering along the predefined direction on the detector; (4) perform
backprojection with the distance weighting.

Zou et al. (2004) proposed an exact reconstruction algorithm backprojection
filtering (BPF). Unlike Katsevich’s approach, BPF performs the filtering af-
ter the backprojection (for example for a helical cone-beam scan, 1D Hilbert
transforms are performed along Pi-line in the image domain, after differential
cone-beam data are backprojected). In contrast, for a FBP-type algorithm,
filtering is always performed before the backprojection step. BPF has the ad-
vantage that is capable of dealing with cone-beam data with a certain amount
of truncation. Hence it is often used for the exact reconstruction in region-
of-interest (ROI) scans (Courdurier et al. 2008; Defrise et al. 2006; Ye et al.
2007).

In a real scan, it is often preferred to reconstruct an image using an approximate
algorithm (e.g. FDK), rather than an exact one (e.g. BPF). There are mainly
four reasons for this preference: (1) mathematical exactness is difficult to be
implemented for an exact algorithm due to the discretized representation of
the image model; (2) an approximate algorithm may produce comparable or
even better image quality, especially when measured data are insufficient or
noise-contaminated; (3) some approximate algorithms are able to use all the
data (e.g. in a helical scan), while the exact one cannot; (4) an approximate
algorithm is often computationally efficient and easily to be implemented for
various geometries. In contrast, a new design of an imaging geometry may
require a new associated exact reconstruction algorithm.

3.4 Iterative reconstruction

After introducing the analytical reconstruction algorithms, we will introduce
several iterative reconstruction algorithms in this section. Many iterative al-
gorithms have been proposed for the purpose of tomographic reconstruction.
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From an optimization theory point-of-view, iterative reconstruction is essen-
tially an unconstrained optimization process. It aims at searching an estima-
ted object that minimizes the inconsistency between the measured data and
the projections computed from that estimated object. Types of iterative re-
construction algorithms differ in choice of cost function and/or optimization
strategies. A flowchart describing how an iterative algorithm works is shown
in Fig. 3.11a.

The fundamental differences between the analytical and iterative algorithm
were discussed in the beginning of the Section 3.3. In contrast to an analytical
algorithm, an iterative algorithm has the advantages of:

(1) Better handling the discretized image model by representing both object
and sinogram in discretization. This allows application of numerical approaches
to solve the reconstruction.

(2) Enabling more complex physical models of the measurement process. For
example when the noise is high in the measured data, the reconstruction suffers
from significant noise propagation. Incorporating the appropriate noise model
to an analytical inversion can be very complicated. On the other hand, iterative
reconstruction algorithms can be developed which are based on an accurate
statistical model for the data noise.

(3) Including prior information to force the estimated object close to a solu-
tion with desired properties. In this case, the reconstruction then becomes a
constrained optimization process. For example if the prior knowledge is “the
object is piecewise constant”, iterative reconstruction will balance the minimi-
zation of the data inconsistency and the prior information to achieve an overall
noise-suppressed solution.

In this section, we will briefly review three common iterative reconstruction
algorithms in CT imaging.

3.4.1 Algebraic reconstruction technique

A popular iterative reconstruction algorithm is algebraic reconstruction
technique (ART), which is adapted from the original Kaczmarz’s method for
solving an overdetermined problem (Chong et al. 2011):

Aµ = l (3.21)

where l are the observed data, µ contains the variables to be estimated and A
is the system matrix mapping µ to l. From an optimization theory point-of-
view, ART can be viewed as a special case of the Projection onto Convex sets
(POCS) method for finding solutions of a system of equations (Bauschke et al.
1996; Escalante et al. 2011). The first application of ART on tomography is
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3.4. Iterative reconstruction

(a) (b)

Figure 3.11: (a) The flowchart of a typical iterative reconstruction algorithm.
Image estimate goes through forward model and the residual errors in pro-
jection domain are back-propagated via the transpose of the forward model.
(b) A variation of (a) which replaces the transpose model with an analytical
reconstruction (e.g. FBP). The algorithm in (b) is often referred as Iterative
FBP (Sunneg̊ardh et al. 2008) and the details are not covered in this thesis.

proposed by Gordon et al. (1970). The basic idea in that work is to solve a
set of linear equations by finding the estimate that satisfies all the constraints
(equations). The image is updated sequentially according to each measured
ray, which is considered as a constraint to the solution and the updates over
rays can be repeated for several iterations. Later Gilbert proposed to update
the image based on all measured rays in all views simultaneously, instead of
updating only based on individual rays (Gilbert 1972). The resulting algo-
rithm is simultaneous image reconstruction technique (SIRT). Another variant
of ART is simultaneous algebraic reconstruction technique (SART) (Andersen
et al. 1984), which updates the image at every time based on all rays in one
individual view. The update equation for ART (and its related algorithms)
is:

µk+1
j = µkj + αj ·

∑
i∈Ω

aij
li−l̂i∑
j
aij∑

i∈Ω

aij

where l̂i =
J∑
j=1

aijµj = ln

(
bi
ŷi

) (3.22)

bi is the measured value of ray i in the blank scan, ŷi are the expected data
computed from projections of the estimated object, k is the iteration number,
αj is the relaxation factor, i is the ray index, j is the voxel index and aij
indicates the intersection of the ray i through the voxel j. SIRT and SART
differ in the summation range in both numerator and denominator in Eq. 3.22.
When Ω is the whole set (all rays from all projections), above equation is the
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update equation of SIRT; when Ω is a subset containing all rays from one view,
above equation is the update equation of SART. SART usually converges faster
than SIRT but may end into a limit cycle. So for SART the relaxation factor
alpha is often set to a value larger than 0 less than 1.

In transmission tomography, ART, SART or SIRT are often referred as a post-
log algorithms, because they are applied to the data after the log-conversion
(Eq. 3.22). Drawback of applying ART in tomography is that it does not work
well for noisy measurements. ART is designed to solve a set of linear equations,
which does not account for the noise characteristics of the measured data well.
As explained in (Natterer 2001), ART will converge to the minimum norm
solution if the data are consistent. However, it will converge to a weighted
least square solution if data are inconsistent. Hence an ART reconstruction
could be very sensitive to the perturbation (e.g. noise) in a scan.

3.4.2 Maximum likelihood algorithm

Rather than finding the solution in an algebraic way, an alternative way is
to construct a cost function which accounts for noise characteristics explicitly
and optimize it. Here y is the measurement, ŷ is the expectation based on µ,
i.e. a noise-free simulation of the CT assuming that µ was the object being
scanned. A statistical model describes the object function of µ as a function
of the measured data y. The aim is to find the distribution µ that maximizes
the probability P (µ|y). According to Bayes rule, we express such probability
to be maximized as:

P (µ|y) =
P (y|µ) · P (µ)

P (y)
(3.23)

where P (µ) contains the prior information and P (y) is independent from µ. If
we assume no prior information is available, the problem reduces to the maximi-
zation of P (y|µ). For a monochromatic transmission scan, we link the expected
value ŷ to the attenuation µ via a discretized version of Beer-Lambert’s law
(Eq. 2.3):

ŷ = bi · exp(−
J∑
j=1

aijµj) (3.24)

where bi is the measured value of ray i in the blank scan. In an ideal photon-
counting scan, it is safe to assume each of photons Poisson-distributed. Since
all measured photons are independent from each other, the probability in Eq.
3.23 turns to:
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P (y|µ) = P (y|ŷ) =

l∏
i=1

P (yi|ŷi) =

l∏
i

ŷyii e
−ŷi

yi!
(3.25)

Maximizing above probability is equivalent to maximizing the logarithm of it,
which is called log-likelihood hereafter (ignoring the constant):

L(µ) = ln (P (y|ŷ)) =

I∑
i=1

(yi · ln ŷi − ŷi) (3.26)

Many algorithms optimizing the above function exist, and they are often refer-
red to as Maximum Likelihood Algorithms for transmission tomography.
For example, maximum likelihood transmission reconstruction (MLTR) applies
a gradient descent algorithm to maximize the above function (Nuyts et al. 1998;
Van Slambrouck et al. 2012). The update equation of MLTR is:

∆µj =

∑
i

aij(ŷi − yi)∑
i

aij(
∑
h

aih)ŷi
(3.27)

When prior information is available, the log-posterior function to be maximized
can be derived from Eq. 3.23:

Φ(µ) = L(µ)+λR(µ) (3.28)

where R(µ) is log-prior, λ is the prior weight. Maximum a posteriori re-
construction for transmission tomography (MAPTR) is the associated recon-
struction algorithm for above function. For a convex prior, its update equation
can be derived as (Michielsen et al. 2015):

∆µj =

∑
i

aij(ŷi − yi) + λ∂S(µ)
∂µj

|µ=µold∑
i

aij(
∑
h

aih)ŷi − λ∂
2S(µ)
∂µj

2 |µ=µold

(3.29)

where S(µ) is the separable surrogate function of R(µ). A similar derivation
for Eq. 3.27 was proposed by introducing a separable quadratic surrogate for
the likelihood function (Erdogan et al. 1999a; Fessler et al. 1997). Note that
another similar algorithm was derived as Convex algorithm for transmission
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scan, which behaves differently in convergence (Beekman et al. 2001; Lange
et al. 1995).

These update equations require the knowledge of both transmission and blank
scans. Unfortunately they are not always available from a clinical CT scanner.
In such a case only the data after log-conversion are available:

li = ln

(
bi
yi

)
(3.30)

If we incorrectly assume that each integral is Poisson-distributed, similar to
Eq. 3.26 we arrive at a log-likelihood function of li instead of yi:

L(µ) =

I∑
i=1

(li · ln l̂i − l̂i) =

I∑
i=1

li · ln J∑
j=1

aijµj −
J∑
j=1

aijµj

 (3.31)

where l̂i is the expected line integral at i. Here we assume there is no prior
information available. Aiming at maximizing the above log-likelihood function,
an update equation of µ can be derived with classical 2-step Expectation Max-
imization algorithm (Borman 2009):

∆µj =

µj
∑
i

aij
li−l̂i
l̂i∑

i

aij
1
l̂i

∑
h

aihµh
(3.32)

Above is the update equation of the maximum likelihood expectation max-
imization (MLEM) algorithm (Lange et al. 1984; Shepp et al. 1982). It is
appropriate for emission data, because measured activity data can be accura-
tely modelled as Poisson-distributed, and MLEM is often considered to be the
routine reconstruction algorithm in emission tomography. For transmission to-
mography, MLEM is often referred to as a post-log algorithm, as the available
data are after the log-conversion. On the other hand MLTR is a pre-log algo-
rithm, which requires both transmission and blank scans are available.

3.4.3 Weighted least squares algorithm

Recall that for a transmission scan, MLTR assumes that the measured data sa-
tisfy the Poisson distribution, while MLEM incorrectly assumes log-converted
data to be Poisson-distributed. Some researchers proposed to use a Gaussian
distribution to model the log converted data. Again assuming no prior infor-
mation is available, the probability in Eq. 3.23 to be maximized is:
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P (l|µ) = P (l|l̂) =

I∏
i=1

P (li|l̂i) =

I∏
i=1

1

σi
√

2π
exp

−
(
li − l̂i

)2

2σ2
i

 (3.33)

where σ is the standard deviation. We can obtain the log-likelihood by taking
the logarithm of above probability and ignore the constant term:

L(µ) = −
I∑
i=1

1

2σ2
i

(
li − l̂i

)2

= −
I∑
i=1

1

2σ2
i

li − J∑
j=1

aijµj

2

(3.34)

The associated reconstruction algorithm for above log-likelihood function is
often referred to as weighted Least Squares (WLS) algorithm. From Eq.
3.23, we can incorporate prior information to form a log-posterior Φ(µ) and
the associated optimization algorithm is the penalized weighted least squares
algorithm (PWLS):

Φ(µ) = −L(µ) + λR(µ) (3.35)

Note that here we have a minimization problem rather than a maximization
problem. So the prior has to be multiplied with −1 to become a penalty in
above equation. If the prior is convex, the posterior must be convex since the
likelihood function is quadratic. Fessler (1994) and Sauer et al. (1993) applied
Gauss-Seidel algorithm to optimize the above log-posterior function, during
which the image is updated on a voxel-by-voxel basis. A different strategy
is to introduce a separable quadratic surrogate approach (Elbakri et al. 2002;
Erdogan et al. 1999b), during which all voxels are updated simultaneously.
In (Elbakri et al. 2002), the following update equation for the attenuation is
obtained by maximizing the surrogate function at every iteration:

∆µj =

I∑
i=1

aijwi

(
J∑
j=1

aijµj − li

)
+ λ∂S(µ)

∂µj
|µ=µold

I∑
i=1

aijwi(
J∑
j=1

aij) + λ∂
2S(µ)
∂µj

2 |µ=µold

(3.36)

where S(µ) is the separable surrogate function of the prior, wi = 1/σ2
i , denotes

the inverse of the local variance in the transmission scan. The interpretation of
the weighting factor wi is straightforward - it reduces the weighting associated
with low photon counts, hence reducing the possibility of artifacts.
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3.4.4 Discussion of iterative reconstruction algorithms

Both maximum likelihood and weighted least squares algorithms assume a sim-
ple statistical model, either Poisson or Gaussian. When using an integrating
detector (Section 2.2), this is merely an approximation to the complex random
processes. Several mixture models are proposed to better model the complex
statistics. Snyder et al. (1993) and Ma et al. (2012) proposed to use a “Pois-
son+Gaussian” model to account for Gaussian-like electronic noise. Whiting
(2002) and Elbakri et al. (2003) proposed to use a “compound Poisson” model
to model the statistics at several distinct energy levels. An even more accurate
modelling would involve Monte Carlo simulations (Jan et al. 2011).

When using a post-log algorithm to reconstruct a real transmission dataset (like
using SART or FBP), in theory one shouldn’t assume noise-free data. Simply
treating the log-converted line integrals as Poisson-distributed (using MLEM)
is also suboptimal (as the new distribution of the converted data is not Poisson
anymore). Nevertheless, post-log algorithms like MLEM, SART or even FBP
often produce acceptable reconstruction when the noise level is low in measured
data. In contrast, another post-log algorithm WLS works well even when noise
is high in the data. The reason is that it includes some statistical weighting
strategy during the reconstruction, which has the same effect as modelling a
statistical model in a pre-log algorithm. A detailed comparison between pre-log
and post-log algorithms can be found in (Fu et al. 2017).

Algebraic reconstruction, maximum likelihood and weighted least squares algo-
rithms can all be interpreted as a general gradient decent optimization method,
of which the update equation is:

µk+1 = µk − α∇f(µk) (3.37)

where f is the cost function, k is the iteration number, α is the step size, ∇f
is the first derivative of the cost function at xk.

3.5 Accelerating iterative reconstruction

Although widely used in nuclear medicine, iterative reconstruction has only
been receiving more attention recently in CT imaging and was only implemen-
ted a few years ago in some of the vendor software packages, e.g. Veo from
GE and iMR from Philips. Iterative reconstruction is promising for applicati-
ons to low dose CT-scan (Sidky et al. 2008) and artifact reduction (De Man
et al. 2001). However, one major concern is the relatively long computation
time, due to the frequent forward and backprojection operations. When prior
information is available, the additional calculation may further increase the
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computation time. There is a general interest in accelerating the iterative re-
construction to facilitate the acceptance in clinical routine. In this section,
we will introduce several approaches to accelerate an iterative reconstruction
algorithm. These approaches are general, meaning that they can be combined
with most iterative algorithms. More complicated acceleration techniques aim
at choosing advanced optimization methods for the cost function, especially
with the prior information (Chun et al. 2014; Nien et al. 2015; Ramani et al.
2012). These techniques are beyond the scope of this thesis.

3.5.1 Ordered subsets and block iterative algorithm

An iterative reconstruction can be accelerated by applying sequential updates
for different subsets of the measured data. Hudson et al. (1994) first pro-
posed such a technique for MLEM reconstruction, resulting in OSEM algo-
rithm for emission tomography. Later this technique was introduced to the
reconstruction of the transmission data, resulting in algorithms like OS-MLTR
(Nuyts et al. 1998), OSTR (Erdogan et al. 1999a), OS-PWLS (Erdogan et al.
1999b) and OS-SIRT (Wang et al. 2004). To obtain a good convergence rate,
such an update requires any projection view within one subset should be as far
away as possible from others in the same subset - obviously any neighboring
views or opposite views should be avoided in a single subset. For the same rea-
son, it is better to make the angular distance between the views in subsequent
subsets as large as possible. Because of the predefined order used to group
the projections, this technique is called ordered subsets acceleration. One
problem when using the ordered subsets acceleration in reconstruction is that
the algorithm converges to a limit cycle. The reason is that ordered subsets
reconstruction algorithm is essentially a stochastic gradient optimization algo-
rithm which approximates the full gradient with sub-gradients from all subsets.
The variance introduced by such approximation is no longer negligible when a
large number of subsets are used. Hence a too large number of subsets is not
preferable in an iterative reconstruction, unless relaxation is applied in later
iterations (e.g. in SART) or a descending numbers of subsets is applied as the
iteration number increases (Ahn et al. 2003, 2006; De Pierro et al. 2001; Kole
2005).

As an alternative of the ordered subsets technique, the block iterative coordi-
nate descent (B-ICD) update algorithm was proposed to accelerate an itera-
tive reconstruction. Unlike in ordered subsets acceleration where the measured
data are divided in subsets, in this approach the volume is divided into blocks.
The divided blocks are updated sequentially in a predefined order - again ar-
ranged such that the neighboring blocks are as far away from each other as
possible. B-ICD was integrated into SART (Byrne 2005), PWLS (Benson et
al. 2010), MLTR and MLEM (Van Slambrouck et al. 2014). A special case of
Benson et al. (2010) is when the size of a single block reduces to single voxel,
the algorithm then becomes the iterative coordinate descent algorithm (ICD)
(Sauer et al. 1993). Note that when a block only contains one (e.g. in ICD)
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or few voxels, a special design of the projector is often needed for efficient re-
construction (Fessler et al. 2011; Van Slambrouck et al. 2014). A downside of
B-ICD is the unbalanced convergence rates in different blocks. Hence it is often
suggested to start the reconstruction from an initial image obtained from an
analytical reconstruction. One may wonder about the possibility to combine
ordered subsets and B-ICD techniques. It is often true that such a combina-
tion can further accelerate the iterative reconstruction. However, one needs to
carefully avoid making reconstruction converge to in a limit cycle or even obtai-
ning a diverged solution, due to the fact that ordered subsets approach is not
guaranteed to achieve convergence, as discussed in the last paragraph.

3.5.2 First order momentum

As mentioned at the end of Section 3.4, the iterative reconstruction algorithms
introduced in this thesis can be viewed as “simple” gradient descent algorithms,
which are known to have a slow convergence rate considering the existence of
advanced optimization methods. First order momentum is a common method
to solve an unconstrained optimization problem. It requires to calculate the
first derivatives (Jacobian) of the cost function - such as conjugate gradient
descent and other gradient descent algorithms. Second order methods require
to calculate the second derivatives (Hessian), an example being Newton’s met-
hod. Superior convergence rate can be achieved over the “simple” gradient
descent algorithm when using some of the first order and second order approa-
ches. However a careful selection on searching directions and step sizes is often
required during the optimization.

Momentum methods are a type of first order method thst can accelerate the re-
construction significantly and can easily be applied on top of “simple” gradient
descent methods. The classical momentum works in a way to “accumulate a
velocity vector in directions of persistent improvement in the cost function”
(Sutskever et al. 2013). Let us apply the classical momentum approach to the
general update equation of a tomographic image reconstruction:

µk+1 = µk − α∇f(µk) + v(µk − µk−1) (3.38)

where α is the step size, v is the velocity rate, µk is the current image estimate
and µk−1 is the previous one, ∇f is the first derivative of the cost function at
xk. It can be seen that when v equals to zero, the momentum method reduces
to the standard gradient descent algorithm (Eq. 3.37).

As a momentum method, Nesterov’s method is proved to have good conver-
gence rate for convex optimization (Nesterov 1983). It differs from the classical
momentum method in two aspects: (1) Nesterov’s method gives formulas for
the step size and velocity rate, whiles the standard method does not. (2)
Nesterov’s method calculates the gradient after applying the velocity, while
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standard momentum methods calculate the gradient before applying the velo-
city. With suggested parameters in (Beck et al. 2009), Nesterov’s approach can
be applied on top of an (ordered subsets) iterative reconstruction algorithm as
follows:

For each itertation
For each subset

iter 0 : choose µ0, set ρ0 = µ0, t0 = 1
iter k : µk = ρk − 1

L∇f(ρk) ;update µ

tk+1 =

(
1 +

√
1 + 4(tk)

2

)
/2

ρk+1 = µk + tk−1
tk+1 (µk − µk−1) ; apply momentum

Endfor
stop until convergence
Endfor

where ρ is an auxiliary variable and L is the Lipschitz constant. Above al-
gorithm uses two previous updates (µk, µk−1) to calculate the momentum.
Nesterov (2005) proposed a momentum method using all previous updates to
further improve the stability and convergence rate of the optimization.

It is often still slow to solely apply Nesterov’s method in CT reconstruction, due
to the large number of parameters to be estimated. Kim et al. (2015a) proposed
to combine Nesterov’s method with the ordered subsets technique. However, a
combination can magnify the accumulated variances from an ordered subsets
reconstruction algorithm. To reduce the instability introduced by variances,
Kim et al. (2015a) proposed to apply relaxations on both velocity v and step
size α in Eq. 3.38. As an alternative approach inspired by (Johnson et al.
2013), Zhou et al. (2017) proposed to include a correction step after every
image to update reduces the variances. Both approaches were proved to allow
the usage of large number of subsets in CT reconstruction, while combined
with the momentum approach.

3.5.3 Parallel computing

Rather than modifying the algorithm itself, another approach to accelerate an
iterative reconstruction is running the computational intensive operations on
multiple-core CPU/GPU(s). Repetitive forward and backprojection often are
the bottleneck in an iterative reconstruction process. Both forward and back-
projection are parallelizable. In principle, forward and backprojection ope-
rations can be performed either in voxel-driven or ray-driven manner. For
instance, a ray-driven forward projection loops through all rays and for each
ray, reads and sums the voxels contributing to that ray; a voxel-driven forward
projection loops through all voxels and for each voxel, updates the voxel by
receiving contributions from all passing rays.
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In sequential computing, e.g. on a single thread CPU, the computation bur-
den of ray-driven and voxel-driven forward and backprojection are very similar.
But in parallel computing , the computation time associated with a voxel-
driven or ray-driven implementation can be very different due to “racing”, i.e.
multiple writes to one address in memory at the same time. Although mo-
dern parallel computing languages (e.g. CUDA or OpenCL) have a built-in
atomic function to handle such conflicts, this comes at the cost of additional
calculation times (because of introduction of the scheduling scheme). Hence
for forward projection, it is preferred to use the ray-driven manner to avoid
the racing on ray updates. For the same reason for backprojection, it is pre-
ferred to use the voxel-driven manner to avoid the racing on voxel updates. In
practice, such preferences are inconvenient, since it is much easier to ensure
that backprojection is the exact adjoint of the forward projection, i.e. both are
ray-driven or both are voxel-driven).

Additional attention should be paid when performing parallel computing on a
GPU - one needs to maintain all pipelines busy to hide the latency of context
switching between the CPU and GPU. This requires transferring the data to
GPU infrequently hence reducing overall transferring time. For this reason
an ordered subsets reconstruction could be ineffective when only forward and
backprojection are performed on GPU. One can imagine when a large number
of subsets are used, context switching time cannot be hidden anymore (Maaß et
al. 2011; Xu et al. 2010). To maximize the overall efficiency, a trade-off between
the acceleration from ordered subsets and the acceleration from parallelization
needs to be found. One way is to select a proper number of subsets which
results in an overall acceleration, while the selection depends on data size and
hardware features. Another way is to let the whole iterative algorithm run on
GPU, rather than just forward and backward projection operations (Fig. 3.12)
(Keck 2014). In such a way no context switching between CPU and GPU is
required. However, prototyping an iterative reconstruction algorithm may be
not easy on GPU. Note that parallel computing on CPU suffers less from the
above issue, since transferring memory from CPU to RAM is much cheaper
than from CPU to GPU.
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3.5. Accelerating iterative reconstruction

(a) (b)

Figure 3.12: Different strategies to implement an iterative reconstruction algo-
rithm on GPU: (a) only running forward and backward projections on GPU,
and rest of the program on CPU. (b) running the whole algorithm on GPU.
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Chapter 4

Motion artifact reduction

In CT Imaging, artifacts can be defined as the discrepancy between the es-
timated object and the real attenuation representation of that object. The
artifacts can appear as a pattern of rings, cupping, streaks, shading and blur-
ring, etc. Most artifacts arise from inaccuracies in the models used to represent
the image, the physics and/or the geometry. One typical image model error
originates from the discretized representation of the continuous object and rays.
Physical model errors result from the inaccurate models of the physical pro-
cesses that contribute to CT imaging, including noise, beam hardening, scatter
and movement, etc. Geometrical model error refers to the failure of calibration
of the mechanical alignment of the detector and/or source positions. If any of
above factors are not addressed properly during reconstruction, the resulting
image can be difficult to interpret. A review on various artifacts in CT ima-
ging can be found in (Barrett et al. 2004). Numerous methods were proposed
to eliminate or reduce each type of image artifacts. All these methods are
either based on image processing techniques or on the design of more accurate
reconstruction models (Nuyts et al. 2013).

Voluntary and involuntary patient motion are very common causes of image
artifacts in CT imaging. Patient motion can be categorized into either rigid mo-
tion (head and extremities) or non-rigid motion (heart, lung and other internal
organs). In CT imaging, we can assume that the motion during the acquisition
of a single view is negligible, because of the high sampling rate. Except for
some dedicated respiratory or cardiac procedure, the reconstruction applied in
clinical CT imaging assume that there is no patient or organ movement during
the scan. Therefore, any motion would break the data-consistency and induce
artifacts in the reconstructed image. Motion correction is of general interest in
research and clinical fields. In this section, we will review several techniques
that eliminate or reduce the motion artifacts. Motion correction methods are
divided into two categories in this Chapter. The first group requires the mo-
tion information, and consists of motion acquisition and motion compensation
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processes. Motion acquisition derives the motion from reference images, surro-
gate signals or from the data themselves. Motion compensation compensates
the artifacts during a reconstruction process. The second group corrects the
motion artifacts using ways of image-processing techniques, without knowing
the motion information.

4.1 Methods requiring motion information

When motion is known or can be derived, motion compensated reconstruction
can compensate that motion. In this section, we will first introduce the ways
to derive the motion. Then we will introduce the ways to compensate the
motion in a reconstruction. In the end, we will introduce a joint estimation
method that estimates and compensates the motion alternately in an iterative
scheme.

4.1.1 Motion acquisition

Deriving motion from reference images

Sometimes motion-free prior scans of the same patient are already available
before the motion correction for the current scan. Some researchers investigated
the possibility to estimate the motion with the prior scans (Gendrin et al.
2012; Markelj et al. 2012). This is based on the fact that a set of motion-free
projections should match the reprojections of the reconstruction image from a
prior scan, which is considered to be a reference image . In each view, 2D/3D
registration can estimate the motion of the reference volume that fits best to
the motion-contaminated projections. Both rigid and non-rigid motion across
views can be determined in such way. Furthermore, the estimated motion
can be refined in an iterative manner by repeating above 2D/3D registration
process at each projection view.

Deriving motion with external and internal tracking

Unfortunately prior scans are not always available. Then rigid motion of head
or extremities, or surrogate signals of some periodic internal organ motion can
be measured with the help of dedicated external devices. These devices work
with mechanical, acoustic, magnetic or optical tracking techniques, and are
often commercially available. Such measurement is often referred to as exter-
nal tracking . External tracking was proven to be able to measure the rigid
motion. Kim et al. (2015b) applied a marker-based optical tracking system to
monitor the movement of the patient head during helical CT scans. Markerless
optical tracking techniques have been also applied in tracking head movement
in positron emission tomography (PET) and CT scans (Bier et al. 2017; Kyme
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et al. 2014). For the non-rigid motion of the internal organs, external tracking
can only provide surrogate signals but not the actual motion. Cardiac and
respiratory surrogate signals are measured with the help of dedicated devices
in diagnostic imaging, image-guided surgery, and radiation therapy (Desjardins
et al. 2004; Hugo et al. 2012).

Fiducial markers are sometimes used to track the movement of internal or-
gans, this technique is referred to as internal tracking . Internal tracking is
commonly used in radiotherapy, during which the accurate beam delivery is
crucial. Before the therapy, fiducial markers are implanted close to the tumor,
allowing real-time tracking of the tumor movement in simultaneously acquired
fluoroscopy (2D projections) during the therapy (Keall et al. 2004; Shirato et al.
2003). In diagnostic imaging, applications of fiducial markers have also been
investigated in extremity imaging. Choi et al. (2013, 2014) used implanted
markers to estimate the knee motion in weight-bearing imaging. In that work
the rigid pose in each projection was estimated by minimizing the difference
between the expected and measured locations of the markers in projections.
Non-rigid movement can also be estimated based on projections by identifying
the locations of multiple markers in the projections. Rene (2010) assumed little
lung movement within one scanner rotation and estimated 2D motion fields for
each projection within that rotation. Then a 3D motion field relative to a refe-
rence pose was derived from that set of estimated 2D fields. Sometimes when
fiducial markers are not available, high intensity structures (e.g. bones) are
used as virtual fiducial markers in projections, since the movement of the high
intensity structures contributes the most to the estimation of the deformation
in projections.

Deriving motion from the data

When neither tracking data nor prior scans are available, motion acquisition
has to rely on the measurement data only and is often more challenging. In
such cases, the acquisition of the motion essentially is a motion estimation pro-
cess. One data-driven approach is based on motion artifact metrics, which
are defined as image features that are sensitive to the motion artifacts, e.g.
entropy, sharpness, gradients. The rigid or non-rigid motion in each projection
view can be estimated by minimizing these metrics from a motion-corrupted
image. Rohkohl et al. (2013) and Hahn et al. (2017) estimated the non-rigid mo-
tion by minimizing the image entropy within a cardiac ROI. Promising results
on motion reconstruction of coronary arteries were reported in those studies.
Sisniega et al. (2017) compared different artifacts metrics when estimating the
rigid motion in weight-bearing imaging. That work suggested that gradient-
based metrics gave overall the best performance in motion estimation for high
resolution cone-beam CT scans. However, it is questionable how well a motion
artifact metric method would work for severe motion estimation, as optimizing
a certain metric might lead motion estimate to a local minima.
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Another data-driven motion estimation approach is based on data-consistency .
In a CT-scan, data-consistency describes the data redundancy from the mul-
tiple scanning positions of the same object. When motion occurs, the consis-
tency conditions would no longer be satisfied in the measured data. Because
of that, one can estimate the motion by forcing the data to satisfy the consis-
tency conditions. The Helgason-Ludwig consistency condition (HLCC) (Lud-
wig 1966; Sigurdur 1999) is a condition describing the relationship between the
Radon transform of parallel projections and the imaged object. For instance in
parallel-beam geometry, the zero-order HLCC states that the summation of all
projections is a constant independent from the view. HLCC was extended into
fan-beam (Leng et al. 2007; Yu et al. 2007, 2006) and cone-beam (Clackdoyle
et al. 2013, 2016) geometries, and showed promising results when applied to
motion estimation. Other consistency conditions can also be used for motion
estimation, e.g. Fourier consistency condition (Berger et al. 2017), Epipolar
consistency condition (Aichert et al. 2015) and John’s equation-based consis-
tency condition (Levine et al. 2010). However, we observed that most of the
above methods were only verified in simulation studies. One possible reason is
that all consistency conditions are derived based on ideal assumptions - with
continuous image and detector models, no truncation and monochromatic X-
ray source, etc. A real scan can cannot match all these assumptions. Hence
artifacts from compound sources may affect the accuracy of the motion esti-
mation, as many factors other than motion contribute to the violation of the
data-consistency.

4.1.2 Motion compensation

Compensating in an analytical reconstruction algorithm

After motion is acquired, the next step is to reconstruct an image with com-
pensation for that motion. It is possible to perform this in an analytical re-
construction algorithm. In 2D, exact FBP reconstruction with known affine
motion is possible for both parallel-beam and fan-beam geometries (Desbat
et al. 2007; Roux et al. 2004). In 3D, a generalized BPF algorithm is propo-
sed to exactly reconstruct the non-truncated data measured with an arbitrary
source trajectory (Ye et al. 2005), which effectively is a motion-corrected tra-
jectory when motion is present. Due to the complexity of implementation in
an exact algorithm, other researchers use approximate algorithms to perform
the motion compensation instead. For example in an FDK algorithm, motion
is corrected in the backprojection step, ignoring the adjustment of the ramp
filtering and weightings. The reconstructed image quality is often acceptable
when the motion is small. Schäfer et al. (2006) have shown that when the
cardiac motion is known, one can compensate that motion by reconstructing
the image in a particular reference pose. This is achieved by changing the in-
tersection position of the ray and the volume during the backprojection step
of an FDK algorithm in all views. The effective ray path is a warped version
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of the original path - deformed by the non-rigid motion (Fig. 4.1b). Rather
than compensating the motion during the backprojection, alternately one could
compensating the motion after the backprojection. A straightforward way is
to first perform the normal backprojection, then compensating the motion by
warping the backprojected image with respect to the known motion field. This
approach is commonly-used in 4D CT imaging.

Compensating in an iterative reconstruction algorithm

Aside from an analytical algorithm, it is also possible to perform motion com-
pensation in an iterative reconstruction algorithm. Kim et al. (2015b) corrected
the rigid motion with respect to an arbitrary coordinate system fixed to the ob-
ject. They re-oriented the ray paths by transforming the source-detector pairs
during both forward and backward projections (Fig. 4.1c). Compared with
an FBP-type algorithm, an iterative reconstruction algorithm does not involve
ramp-filtering and pre-weighting. This allows compensating larger motions but
often with long computation times due to the repetitive nature of the iterative
algorithm.

4.1.3 Joint motion estimation and compensation

If the motion is known as a priori, then it is relatively straightforward to
implement the motion-compensated reconstruction. Another way to correct
the artifacts is to perform a joint motion estimation and motion compensation
process. Rohkohl et al. (2013) and Hahn et al. (2017) alternately estimated the
non-rigid motion in a cardiac ROI and compensated that motion in an FDK
reconstruction. The process was repeated for several iterations until a satisfied
image was obtained.

4.2 Image-processing based methods

When the motion is not known, motion correction can be implemented with
an image-processing process, directly targeting artifact-contaminated projecti-
ons or images. Lu et al. (2002) correct the measured data from a respira-
tory motion-contaminated scan, under the assumption of a simple motion mo-
del. The restored projections can then be reconstructed to an artifact-reduced
image. Schretter et al. (2009a) attempted to segment an artifacts-only image,
by comparing the forward projections of an initial reconstructed image and
the actual measured projections and reconstructing the differential projections.
The artifacts-only image can then be subtracted from the initial reconstructed
image and above procedure can be repeated several times. Schretter et al.
(2009b) and Marchant et al. (2011) tried to register the measured projections
to the forward-projections of the initial reconstructed image non-rigidly. The
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Figure 4.1: (a) Backprojection geometry at one view position. (b) non-rigid
motion is compensated by performing the backprojection over a warped ray
path deformed by the motion. (c) rigid motion is compensated by performing
the backprojection with transformed source-detector pair position.

registered projections were used to generate an initial compensated image and
this procedure can be repeated iteratively until a final compensated image was
obtained. Other techniques assumed that the periodic movement of a lung
tumor or the beating heart only result in blurring on the image (Fang et al.
2013; Nett et al. 2016; Schlueter et al. 1994; Xu et al. 2011). Such blurring can
be modelled as a convolution on a motion-free tumour or heart region. The cor-
rection performs deconvolution on the region with blurring while keeping other
regions unchanged. All above image-processing techniques often produce ima-
ges with residual artifacts, due to the lack of exact motion information.
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Chapter 5

Objectives

The overall purpose of this thesis is to investigate and mitigate the potential
effect of patient head movement on image quality in CT imaging. Specifically,
the first objective is to propose a new approach to mitigate the rigid motion
artifacts in helical head CT images. Our second objective is to extend this
motion artifacts reduction approach to applications in dental cone-beam CT
imaging. Sometimes we observed residual artifacts even after compensation
based on perfect knowledge of the motion. Those residual artifacts are believed
to be mostly due to incomplete measurement. Hence our third objective is
to identify the degree of incompleteness of the measurement at voxel level in
motion-corrected scans, which can be used to indicate associated artifacts in a
reconstructed image.

An iterative projection-based motion estimation and
compensation scheme for head X-ray CT

We aim to perform motion correction for motion-contaminated helical CT
scans. We assume the movement in these scans can be modelled as a series of
rigid poses across projection views. The proposed approach would only require
the measured raw data, without any prior knowledge of motion or reference
scans. The proposed approach estimates the motion in an iterative scheme,
where the motion and the image are updated alternately. A subsequent high-
resolution reconstruction is performed to compensate the last motion estimate.
In Chapter 6, we evaluate the proposed approach in simulations, a phantom
study and patient studies.
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A motion compensation approach for dental cone-
beam region-of-interest imaging

Dental imaging is often performed on dedicated cone-beam CT systems rather
than clinical multi-row CT systems. During a scan, cone-beam CT uses a
circular trajectory and keeps the targeted structure in the FOV during the
entire scan. We aim to investigate a motion correction approach for dental
cone-beam CT based on the previous approach. In this study, we assume
that we are dealing with the dental scans with rigid motion but not non-rigid
motion. Compared with motion correction on a helical CT scan, there are three
challenges when correcting a dental scan: (1) a dental scan has a longer duration
thus there is a higher probability of patient movement; (2) resolution of a dental
scan is often quite high which makes the reconstructed image even sensitive
to a slight movement; (3) a dental scan often reduces the irradiated volume
by limiting both transaxial and axial FOV. Induced transaxial truncation in
data may have negative effects on motion correction performance, whereas
clinical CT data only suffer from axial truncation. We proposed modifications
to the motion estimation and motion compensation procedures to account for
these challenges. In Chapter 7, we evaluate the proposed approach in both
simulations and a phantom study.

Estimation of local data-insufficiency in motion-corrected
helical CT

We aim to find a way to determine the local data-insufficiency in a CT-scan.
Data-insufficiency problems arise from the fact that (1) interference between
patient motion and gantry motion might occur, which causes angular sampling
to change and become insufficient; (2) part of the object that should be seen
in a particular view moves out of the FOV, because of the patient motion in
combination with axial truncation. These effects cause insufficient data and
motion correction would not eliminate the artifacts from the data insufficiency.
Currently there is no general theory to assess data-sufficiency for tomographic
acquisition with truncated views, as is always the case in a helical CT scan. All
motion involved in this study are rigid. We propose a measure that quantifies
the degree to which the local sufficiency condition is violated. The approach
would be potentially useful in many tomographic applications, regardless of
motion. In Chapter 8, we evaluate the proposed approach in simulations and
a phantom study.
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Chapter 6

An iterative projection-based
motion estimation and com-
pensation scheme for head
X-ray CT

This chapter is modified based on the publication: T. Sun, J.-H. Kim, R. Fulton,
and J. Nuyts, “An iterative projection-based motion estimation and compensa-
tion scheme for head X-ray CT,” Med. Phys., vol. 43, no.10, pp.5705-5716,
2016.

Purpose Although current CT systems can scan the head in a very short
time, patient motion sometimes still induces artifacts. If motion occurs,
one has to repeat the scan; to avoid motion, sedation or anaesthesia is
sometimes applied.

Method We propose a method to iteratively estimate and compensate this
motion during the reconstruction. We assume that the motion of the
human head is strictly rigid. In every iteration, the rigid motion was
estimated view-by-view and then used to update the system matrix. A
multi-resolution scheme was used to speed up the convergence of this joint
estimation of the image and the motion of the subject. A final iterative
reconstruction was performed with the last motion estimate.

Results The method was evaluated on simulations, patient scans and a phantom
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study. The quality of the reconstructed images was improved substan-
tially after the compensation. In simulation and phantom studies, root-
mean-square error (RMSE) was reduced and mean structural similarity
(MSSIM) was increased. In the patient studies, most of motion blurring
in the reconstructed images disappeared after the compensation.

Conclusions The proposed approach effectively eliminated motion-induced
artifacts in head CT scans. Since only measured raw data is needed for
the motion estimation and compensation, the proposed approach can be
applied retrospectively to clinical helical CT scans affected by motion.

Personal contribution The PhD student proposed the methodology, with
contribution from Johan Nuyts. Simulation was performed by the PhD
student. Patient and phantom data were collected with the help of Roger
Fulton and Jung-Ha Kim. Software was implemented, evaluated and
optimized by the PhD student, who also drafted the manuscript. The
co-authors Johan Nuyts, Roger Fulton and Jung-Ha Kim contributed to
the editing of the manuscript.

6.1 Introduction

A slight movement of the patient can lead to a reduction of spatial resolution
in Computed Tomography (CT), in severe cases resulting in corrupted ima-
ges unsuitable for diagnosis or further processing. To reduce the likelihood
of motion artifacts, CT manufacturers have made scans faster by increasing
the number of detector rows and the rate of rotation of the x-ray source and
detector. Other ways to reduce the patient motion include general anesthesia,
sedation (Wachtel et al. 2009) and the use of restraining devices for head and
neck imaging (Barrett et al. 2004).

In practice it is difficult to completely eliminate motion, and compensating
motion artifacts is of considerable general interest in tomography. A variety
of methods for assessing motion in CT exist, including directly estimating mo-
tion using a camera system with visual markers (Bhowmik et al. 2012; Kim
et al. 2013, 2015b, 2016) or without markers (Noonan et al. 2012). Artifi-
cial or anatomical landmarks can be also tracked in the image or projection
domains (Lu et al. 2002; Ritchie et al. 1996). Indirect estimation methods
have been proposed where motion is estimated through the minimization of
errors in consistency conditions (Clackdoyle et al. 2015; Leng et al. 2007; Yu
et al. 2007, 2006), or estimate the motion by minimizing an image-based cost
function (which essentially detects motion artifacts) (Kingston et al. 2011; Ky-
riakou et al. 2008; Rohkohl et al. 2013). Another approach has used similarity
measures to quantify changes between successive projections to measure sub-
ject motion (Ens et al. 2009). Once motion parameters have been estimated, a
compensation for the motion can be applied, either to the measured raw data
or during the reconstruction process.
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Among these methods, some addressed the problem in 2D parallel-beam or fan-
beam geometries (Clackdoyle et al. 2015; Leng et al. 2007; Yu et al. 2007, 2006).
Other retrospective motion estimation and compensation methods addressed
the problem for 3D circular cone-beam CT (Kingston et al. 2011; Kyriakou et
al. 2008; Lu et al. 2002; Ritchie et al. 1996). Motion estimation and compen-
sation is arguably simpler in cone-beam CT since the entire object is normally
in the field of view at all times. In contrast, in helical CT, the object is always
truncated in the axial direction, limiting the amount of information that can
be used to verify consistency of the projections. Relatively few studies have
been done for clinical helical CT, and some of those require additional measu-
rement to acquire the motion (Bhowmik et al. 2012; Kim et al. 2013, 2015b,
2016).

In this study, we propose an approach to reduce or eliminate motion artifacts in
helical CT reconstruction. The proposed motion estimation and compensation
method only needs the measured raw data. The method assumes that for
each view, the pose of the measured object may be different. Consequently, for
every view, a rigid transformation representing the object pose is estimated. An
initial compensation for changes in pose (motion) during projection acquisition
is applied during reconstruction by incorporating the motion estimates into
the system matrix (Kim et al. 2015b). Then the motion and the reconstructed
image can be updated alternately in an iterative scheme until an optimal motion
estimate is found. The proposed approach has been validated on simulations
and a phantom study by comparing reconstructed images with and without
motion compensation. Results on patient scans are also presented.

6.2 Materials and Methods

6.2.1 Coordinate system

A clinical helical CT system usually has a cylindrical detector surface, with a
radius equal to the detector source distance. We define the world coordinate
system c = (x, y, z) ∈ <3 in Fig. 6.1. It is fixed with respect to the scanner,
and its z-axis coincides with the rotation axis of the scanner. The detector
coordinate system c′ = (u, v, z) ∈ <3 is fixed with respect to the rotating
source-detector system: its origin moves along z-axis while the system moves,
u is tangent and v is orthogonal to the detector. For one projection view, we
define the rigid motion transform in the coordinate system c:

Sworld = (ϕx, ϕy, ϕz, tx, ty, tz)
T (6.1)

where ϕx, ϕy, ϕz are 3 rotations, tx, ty, tz are 3 translations. The motion can
be mapped in a detector coordinate system c′:
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Sdetector = (ϕu, ϕv, ϕz, tu, tv, tz
′)T (6.2)

where ϕu, ϕv, ϕz are rotations, tu, tv, t
′
z are translations. A small motion in the

direction perpendicular to the detector tv, results in a very small magnification
of the projection, which is assumed negligible (Gullberg et al. 1987). In every
projection view, then, we set tv to zero and only 5 parameters need to be
estimated in our scheme in the detector coordinate system c′:

Sdetector = (ϕu, ϕv, ϕz, tu, tz
′)T (6.3)

Figure 6.1: The scanner and detector system on which motion estimation and
compensation is based. The offset along the rotation axis between origins of
the two systems is toffset.

6.2.2 OSEM reconstruction

In the presence of object motion, the helical CT-orbit is distorted into an
effective orbit with arbitrary shape (Kim et al. 2015b). Because this is pro-
blematic for analytical reconstruction, an iterative reconstruction algorithm
is needed. We used OSEM as the reconstruction algorithm (Hudson et al.
1994):
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µk+1
j =

µkj∑
i∈Sb

aij
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i∈Sb

aij
li∑

h

aihµkh
(6.4)

where l is the log converted sinogram, Sb is one subset (consisting of b views).
We used the OSEM algorithm for convenience, but if the use of a better noise
model would be required, it can be replaced with a dedicated iterative algorithm
for transmission tomography (Nuyts et al. 1998).

6.2.3 General motion estimation and compensation scheme
(ME/MC)

The aim is to estimate the pose of the object for each of the acquired CT
views. This is achieved by a 3D registration of the object to each of the 2D
views independently. The first estimate of the 3D object is obtained with an
initial reconstruction without motion compensation. As a result, that first
image suffers from motion artifacts, which will adversely affect the accuracy of
pose estimates associated with each view. Nevertheless, we find that the 2D-3D
registration process described below still captures part of the true motion, such
that reconstruction with motion compensation based on these (poor) motion
estimates improves the reconstruction. Reiterating the process with this im-
proved reconstruction in turn produces more accurate motion estimates. This
leads to an iterative algorithm which alternately estimates the motion for each
view and the motion compensated image. This algorithm is explained in more
detail in the following paragraphs.

Although the initial reconstructed image is motion-contaminated, it can be
used to generate a first rough motion estimate. This motion is taken into
account in a reconstruction process to generate a motion-corrected image at
the first iteration. Then the motion-corrected image and the motion estimate
are alternately updated to increase the likelihood, the iterations are stopped
when the updated motion seems to have converged (Fig. 6.2). The algorithm
consists of two parts: (1) the joint image and motion estimation (JIM) and (2)
the final reconstruction (motion compensation). Each JIM-iteration consists of
2 steps: a motion update and an image update. The image update is done by
applying multiple iterations of the OSEM algorithm.

Hence, the implementation involves four steps: (1) a motion update, a 2D-3D
image registration to update the pose estimate for each view in the current
JIM-iteration; (2) an image update, computed with an iterative reconstruction
algorithm incorporating the updated motion estimate in its system matrix at
the current JIM-iteration; (3) alternate updates of both image and motion
within a multi-resolution scheme; (4) final reconstruction with a system matrix
based on the last motion estimate. Details on each part of the framework are
described below.
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Figure 6.2: General motion estimation and compensation scheme. µ is the
update of the attenuation image, S is the update of the rigid motion.

Motion update

For one projection line i, we integrate along the projection line to define the
forward projection of the estimated image µ at current JIM-iteration:

li =
∑
j

aijµj (6.5)

where i is the projection line index, j is the voxel index, aij is the effective
intersection length of the line i with voxel j. In helical CT, the line integrals
are organized in views, where view θ contains all line integrals associated with
a single source position:

lθ = {li} (6.6)

Suppose the general motion estimation and compensation scheme (Fig. 6.2) is
at the JIM-iteration n, hence the current motion estimate is sn. For view θ,
the current pose estimate is snθ and the 5 motion parameters in Eq. 6.3 are
estimated one after the other. Let r be one of these parameters (a rotation or
translation) to be estimated. Assuming that the change in the pose parameter
represented by r̂ is small, the derivative of projection l with respect to r can
be approximated as a finite difference of the intensities:

∂lθ
∂r
≈ lθ,m − lθ(snθ )

r̂
(6.7)
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where lθ(s
n
θ ) is the calculated re-projection (using the current estimates of the

image and motion), lθ,m is the measured projection for view θ. For view θ, r̂
minimizes the difference between lθ(s

n
θ + r̂) and lθ,m. To estimate r̂ in Eq. 6.7,

we need to know the derivative on the left hand side. Therefore, we introduce
another equation which is very similar to Eq. 6.7:

∂lθ
∂r
≈ lθ(s

n
θ + ∆r)− lθ(snθ )

∆r
(6.8)

where ∆r is a known small increment of the parameter to be estimated. When
∆r represents a translation, lθ(s

n
θ + ∆r) can be approximated as a simple

translation of current re-projection lθ(s
n
θ ); for in-plane rotation, again lθ(s

n
θ +

∆r) can be approximated as a simple rotation of the re-projection lθ(s
n
θ ), as

shown in Fig. 6.3 For the two out-of-plane rotations, we calculated lθ(s
n
θ + ∆r)

with a forward projection using a system matrix adjusted with ∆r.

Eq. 6.7 and Eq. 6.8 assume that a small increment of one degree-of-freedom
rigid motion only results in a linear change of the intensities in the projection.
All the above lead to a least squares minimization problem for view θ at the
current JIM-iteration n:

r̂ = arg min
r
‖∆r [lθ,m − lθ(snθ )]− r [lθ(s

n
θ + ∆r)− lθ(snθ )]‖2 (6.9)

To find r̂, Eq. 6.10 was solved analytically. Defining

Pθ = lθ,m − lθ(snθ )
Qθ = lθ(s

n
θ + ∆r)− lθ(snθ )

(6.10)

and setting the derivative of the right hand side in Eq. 6.9 with respect to r
to zero, one obtains:

r̂ =

∑
N

Pθ ·Qθ∥∥∥∥∑
N

Qθ
2

∥∥∥∥∆r (6.11)

where N is total number of voxels in projection view θ.

The above procedure showed how to estimate one parameter in one projection
view. For view θ, this procedure was applied to estimate all five parameters in
Eq. 6.3. The sequence of the estimation was translation first, then rotation.
The newly estimated parameter values were used immediately when estimating
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the value of next parameter. This sequential estimation of five motion para-
meters for all projection views completes the update of the rigid motion at the
current JIM-iteration (Fig. 6.2).

Now the estimated motion is obtained in the detector coordinate system c′

(Fig. 6.1). It is transformed to the motion in the world coordinate system c,
as motion-corrected reconstruction requires the motion in the world coordinate
system:

{
Sn,incθ 7→ Tn,incθ

}
θ=0,...,M

(6.12)

where T is the 4×4 homogeneous matrix representation of the estimated motion
in the world coordinate system. More details about Eq. 6.12 are given in the
Appendix.

The transformation matrix obtained in the nth JIM-iteration was then used
to update the previous motion estimate for every view, which was used in the
next JIM-iteration (n+ 1):

{
Tn+1
θ = Tnθ T

n,inc
θ

}
θ=0,...,M

(6.13)

Figure 6.3: In the detector coordinate system, the effect of object translation
or rotation parallel to the detector can be well approximated as translation
and rotation of the projection. For simplicity, the curvature of the detector is
ignored. In the left half figure, m is the magnification factor from the object
to detector.

Image update

After obtaining the motion, the image representing the attenuation coefficients
can be updated with iterative reconstruction. We used OSEM as the recon-
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struction algorithm.

Instead of moving the reconstructed image in every view, rigid motion com-
pensation is done by considering a coordinate system fixed to the object and
incorporating the motion (now associated to the source-detector pair) into the
system matrix. This corresponds to an arbitrary 3D motion of a virtual gantry
around the object being scanned, created by the superposition of the inverse of
the object motion on the helical trajectory (Kim et al. 2015b). Motion compen-
sation is enabled by introducing a modified version of standard OSEM:

T̂n+1
i = invert(Tn+1

i )

µn+1
j =

µnj∑
i∈Sb

T̂n+1
i (aij)

∑
i∈Sb

T̂n+1
i (aij)

li∑
k

T̂n+1
i (aik)µnk

(6.14)

where T̂i is a 4 × 4 transformation matrix applied to the projection line i. If
Ti is the identity matrix for all projection lines, then Eq. 6.14 is the same
as standard OSEM (Eq. 6.4). In helical CT, Ti is constant for all projection
lines in one projection view, hence the inversion is done for every single view.
Because of the high rotation speed and the large number of views, the motion
within a single view is negligible.

Distance-driven projection is used for interpolation during the (back) projection
(De Man et al. 2004). The new estimate of the attenuation image is then used
for the next motion update.

Figure 6.4: An example of the number of OSEM-iterations and subsets applied
for the image update at each resolution level. Note that we stop the estimation
at the second last level, hence no image and motion updates were computed at
level 1.

Multi-resolution alternate updates

By repeating steps 1 and 2 we can update the motion (Eq. 6.13) and recon-
struction (Eq. 6.14) alternately. Because the image and the motion parameters
are jointly estimated from the measured data, the problem of error propagation
is minimized. An approach to reduce computation time is to apply a multi-
resolution technique. We utilized this by running the algorithm from a coarse
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to fine representation of the image. For example, the starting image resolution
level is 8 × 8 × 8, i.e. a down-sampling factor of eight was applied in all di-
rections. There is a resampling with a factor of two between adjacent levels.
Image updates were reconstructed at coarse resolution at early JIM-iterations,
while the resolution increased as the iteration numbers increased. The num-
ber of OSEM-iterations applied for the image update was the same within one
resolution level. These numbers were optimized based on simulations which
had a similar configuration as the patient study (Fig. 6.4). A possible additi-
onal advantage of the multi-resolution technique is that it may help avoiding
convergence to an undesired local maximum.

It was not obvious how to define good stopping criteria when estimating the
motion at each level, especially considering that the ground truth image was
missing for clinical studies. In our implementation, the summation of pro-
jection errors between the re-projected and measured data over all views was
computed, and at each resolution level, the iterations were stopped when the
relative change of this error measure did not exceed 0.2 %. In our experiments,
we observed that the motion estimate hardly changed during the computations
at the finest resolution. Since these computations (if included) are the most
expensive ones in the multi-resolution scheme, we stopped the scheme at the
second finest resolution.

The motion updates were smoothed (by filtering each degree-of-freedom in-
dependently along the projection views) to remove outliers. We chose the
Savitzky-Golay filter (Savitzky et al. 1964) to do the smoothing. The optimal
size of the smoothing kernel depends on both the view sampling rate of the
measured data and the axial detector extent. The clinical data usually have a
high view sampling rate, while we used a lower rate in simulations. The axial
extent varies with different scan configuration (slice collimation). The optimal
smoothing kernels are determined by simulations with several common collima-
tion configurations, as shown in Table 6.1. If the number of views per rotation
is increased, the number of kernel points is increased accordingly.

Table 6.1: The motion smoothing kernel width for common slice collimation

Case 1 Case 2 Case 3 Case 4

Angles per rota-
tion

150 150 150 150

Collimation
(mm)

96× 0.6
64× 0.6

(32× 1.2)
32× 0.6 16× 0.6

Smoothing ker-
nel (points)

17 23 75 105

61



Chapter 6. Rigid motion correction for helical CT

Final reconstruction

When the motion estimate has converged, a final reconstructed image with
diagnostic quality must be produced for a clinical scan (Fig. 6.2). One way to
speed up the final reconstruction is choosing an initial image which is close to
the maximum likelihood solution. Faster convergence is achieved if the iterative
reconstruction could be started from a sharper image. In simulations we started
the final reconstruction with the last image update from the alternate updates.
Since the alternate multi-resolution scheme was terminated at a coarser grid,
the initial image must be created by interpolating to the finer grid, and as a
result, the initial image is relatively smooth.

For that purpose, we implemented an approximate helical FDK algorithm. We
utilized all the data in each projection view. A first order motion compensation
is obtained by taking the motion for each view into account in the backpro-
jection step. This approximation creates artifacts, but these have typically low
spatial frequencies. Since low frequencies tend to converge relatively fast in
iterative algorithms such as OSEM, only few updates are needed to eliminate
them. For the clinical studies, this FDK-initialisation was used since it was
found to be more efficient to reach convergence.

To further accelerate the final reconstruction, Nesterov’s momentum appro-
ach (Nesterov 2005) was applied (using all previous iterates to compute the
momentum) in the final reconstruction. All forward and backward projection
operations were also implemented in OpenCL and run on a GPU (NVIDIA
Tesla C2075).

6.2.4 Design of the experiments

Simulations

In simulations, measured motion segments from volunteers were applied to a
phantom to generate simulated CT scans subject to patient motion. Details
about measuring these motions are given in (Kim et al. 2016). The phantom
was a 3D voxelized phantom from the Visible Human Project (Ackerman 1998).
The image intensities were converted from Hounsfield (HU) to attenuation coef-
ficients (cm−1) at an effective energy of 70 keV. Image size was 256×256×240;
pixel size was 1× 1× 1 mm3.

All helical scans were simulated as being scanned with a Siemens Definition
AS CT scanner (Siemens Medical Solutions USA, Inc., Malvern, PA), with
reduced angular sampling to reduce computation times. The scan parameters
were: angles per rotation 150, pitch 1.0, collimation 32×1.2 mm. Six measured
motion segments (referred as studies 1 to 6) were applied to the phantom for
the simulated helical scans. Examples of volunteer motion segments are shown
in Fig. 6.5. To avoid artifacts, all simulated helical scans covered a bit more
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than the entire object. Reconstructed images from these scans were analyzed
quantitatively to assess the performance of the proposed approach.

Alternate updates of both image and motion were performed within the multi-
resolution scheme to obtain the final motion estimate. OSEM was used for
all reconstructions, with motion compensation enabled (Eq. 6.14). During the
JIM, the attenuation image was updated using the OSEM iteration schemes
shown in Fig. 6.6. For the final reconstruction, the pixel size was 1 × 1 × 1
mm3, and 4 iterations with 60 subsets were applied.

Poisson noise was added to the raw simulated data before the reconstruction
(assuming 1000 photons were detected on each detector element in the blank
scan). Again OSEM was used for this reconstruction, but as mentioned in
Section 6.2.2, it can be replaced by a dedicated iterative algorithm for trans-
mission tomography.

(a) (b)

Figure 6.5: Examples of the simulated volunteer head motion. (a) Moderate
motion from study 1. (b) Slight motion from study 6. Details of motion
tracking are given in (Kim et al. 2016).

Patient scans

The method has been applied to clinical studies in which motion artifacts had
been observed. The anonymized raw data of four patients who had previ-
ously undergone head CT scans in the Department of Radiology at Westmead
Hospital, Sydney, Australia, were collected with the approval of the Human
Research Ethics Committee of the Western Sydney Local Health District. The
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scans were performed on a Siemens Force scanner (Siemens Medical Solutions
USA, Inc., Malvern, PA). The scan parameters are listed in Table 6.2.

Because the head support and the bed do not move with the patient during
the scan and would compromise the estimation of the patient motion, they
were removed from the raw data prior to further processing. The head support
and (or) bed were firstly segmented from an initial low-resolution reconstructed
image. The segmented portion of image was then forward-projected to generate
a new set of projections, which were subtracted from the measured projections
before the motion estimation and compensation scheme was executed.

Because of the large size of the raw data, motion was estimated at every 8th
view to accelerate both motion and image updates. This resulted in approx-
imately 500 views per rotation. With a rotation time of 1 s, this yields a
temporal sampling of 500 Hz, which was considered sufficient for motion esti-
mation. The multi-resolution JIM scheme was applied as in Section 6.2.3. For
all patient studies, the motion smoothing kernel sizes were selected based on
Table 6.1.

For the final OSEM reconstruction, the starting image was computed with he-
lical FDK reconstruction with motion compensation enabled. Six iterations
with 30 subsets were applied in combination with Nesterov’s acceleration. Ot-
her reconstruction parameters are listed in Table 6.2. Also, the entropy of
the reconstructed images was computed for reconstructions with and without
motion compensation for comparison.

Table 6.2: Scan and reconstruction parameters

Patient 1 Patient 2 Patient 3 Patient 4

Tube voltage
(kVp)

120 120 120 120

Tube current
(mA)

120 154 150 150

Rotation time
(s)

1.0 1.0 1.0 1.0

Pitch 0.55 0.55 0.55 0.55
Angles per rota-
tion

4200 4200 4200 4200

Collimation
(mm)

64× 0.6 96× 0.6 32× 0.6 96× 0.6

Flying focus phi, z phi, z phi, z phi, z

Pixel size (mm3)
0.4 × 0.4 ×
0.75

0.45× 0.45×
0.5

0.455 ×
0.455× 0.5

0.451 ×
0.451× 0.5

Dimension
512 × 512 ×
219

512 × 512 ×
550

512 × 512 ×
376

512 × 512 ×
404
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Phantom scan

In our previous work (Kim et al. 2015b), we developed and optimized a rigid
motion compensation technique for helical CT brain scanning, in which the
motion information was obtained using an optical motion tracking system. We
observed that after motion compensation based on the tracking data, some
residual artifacts were still present. We attributed these artifacts to the finite
accuracy of the motion tracker. In this experiment, we verified whether the
proposed approach can be used to refine the motion estimate from the optical
system.

The scan was performed in the Department of Nuclear Medicine and Ultrasound
at Westmead Hospital, on a Siemens Sensation 16 scanner (Siemens Medical
Solutions USA, Inc., Malvern, PA). The scan parameters were: pitch 1.0, tube
voltage 120kVp, tube current 280 mA and tube collimation 16×0.6 mm. Flying
focus was turned off.

An optical motion tracking system (Polaris Spectra, Northern Digital Inc.,
Waterloo, Canada) was placed at the rear of the scanner. A 3D Hoffman brain
phantom, which contained air inside was used in this experiment. The phantom
was placed off-center on the curved bed and held in place with a wedge (Fig.
6.6a). During the scan, the wedge was removed by pulling a string from outside
the room. The phantom then started rolling left and right on the bed to finally
come to rest at a stable position at the center of the bed. This motion was
too severe to be compensated only by the proposed approach, since the initial
reconstruction was corrupted severely. The tracked rigid motion is shown in
Fig. 6.6b, relative to its pose at the start of the scan.

6.2.5 Evaluation of the results

In the simulation studies, the effects of motion compensation were evaluated
by visual assessment and with quantitative analysis. The reconstructed ima-
ges and the ground truth images were compared in all planes with similarity
metrics. We chose RMSE and MSSIM (Wang et al. 2004) as the metrics. Note
that before the calculation of these metrics, both motion-corrected and uncor-
rected images were registered to the true image plane by plane (Fig. 6.7). This
was done because motion and motion-compensation may introduce positional
differences which are irrelevant for image quality and therefore should not affect
the evaluation of similarity.

In the patient studies, image entropy, with and without motion compensation
applied, was also computed (plane-by-plane), based on the assumption that
motion-induced artifacts would tend to increase the image entropy.

In the phantom study, the quality of the reconstructed images was assessed
for reconstructions with and without motion compensation by comparison to
reconstructions from motion-free CT-scans.
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(a) (b)

Figure 6.6: (a) Setup of the Hoffman phantom used in the experiment, and (b)
measured motion.

Figure 6.7: Pre-processing of the motion-corrected and uncorrected images
before quantitative analysis in simulation studies.
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6.3 Results

6.3.1 Simulations

Fig. 6.8 shows the corrected image of a selected simulation using a moderate
motion segment. Most of the distortions are eliminated. Fig. 6.9 shows the
quantitative analysis of a selected simulation using a slight motion segment.
The true image is much more similar to the corrected image than the uncor-
rected one. Fig. 6.10 shows the overall improvement across all image planes in
all 6 studies with different motions. Fig. 6.11 shows the result of the simulation
study 1 with relatively high noise. The motion estimation and compensation
is still effective on data with high noise level.

Figure 6.8: Results from the simulation study 1 using moderate motion (Fig.
6.5a). Selected transaxial (top) and coronal (bottom) slices from reconstructi-
ons without and with motion compensation, and also from the true image.

6.3.2 Patient scans

Fig. 6.12 and Fig. 6.13 show the non-motion corrected image (reconstructed
with the scanner system software) and motion-corrected reconstructed images
from patient 1 and patient 2, respectively. Fig. 6.14 compares the image of a
repeat scan (which was done because of the observed motion in the first scan)
with the reconstructions, with and without motion compensation for patient
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(a) (b)

Figure 6.9: Results from the simulation study 6 using slight motion (Fig. 6.5b).
Similarity metrics with and without motion compensation over reconstructed
planes. Top: RMSE. Bottom: MSSIM. The difference between the static re-
construction and true image was displayed as the reference.

(a) (b)

Figure 6.10: Box plots of improvement over reconstructed planes of each in-
dividual study — simulation studies (1-6), phantom scan (7). Left: RMSE
improvement. Right: MSSIM improvement. The upper and the lower limit
of the bar are the maximum and minimum. The upper and the lower limit
of the box are the first and third quartiles. The central line is the median.
The circles are the outliers. As a reference for each study, the red dashed lines
represent the medians of the improvement of the static reconstructed image
over the uncorrected image.
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Figure 6.11: Noisy simulation of study 1. Selected transaxial (top) and coronal
(bottom) slices show the improvement on image quality.

3. Fig. 6.15 shows the change of the total image entropy, as an indicator of
artifact reduction.

6.3.3 Phantom scan

As shown in the top row of Fig. 6.16, some small irregularities were visible at
the edges of the phantom in the reconstructed image after a first compensation
using the tracked motion. A possible reason is the finite accuracy of the pose
measurements. For this scan, we applied the proposed approach to compensate
these residual “jagged” artifacts due to the imperfect motion recording. The
motion estimation process was identical to the one applied in the patient stu-
dies, except that the measured motion was used as the initial motion estimate.
The proposed approach removed the artefacts (Fig. 6.16, middle). Quantita-
tive analysis was done similarly to what has been done in simulation studies.
The true image was obtained from a static scan of the same phantom. Fig.
6.10 (box 7) shows the overall improvement of the RMSE and MSSIM across
image planes.
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Figure 6.12: Top: Selected transaxial plane, without (left) and with (right)
compensation for motion artifacts in a scan from patient 1. The uncorrected
image was from a standard vendor reconstruction. Bottom: the same plane
that is shown in a narrow window (Gaussian smoothed with full width at half
maximum (FWHM) = 2 mm).

70



6.3. Results

Figure 6.13: Top: Selected transaxial plane, without (left) and with (right)
compensation for motion artifacts in a scan from patient 2. Bottom: the same
plane that is shown in the same narrow window used in Fig. 6.12 (Gaussian
smoothed with FWHM = 2 mm).

71



Chapter 6. Rigid motion correction for helical CT

Figure 6.14: Top: Selected coronal plane without (left) and with (middle)
compensation in a scan (effective mAs 272) from patient 3. As a reference, the
repeated scan (effective mAs 327, registered to the first scan) is displayed on
the right. Bottom: another plane contains a lesion that is shown in the same
narrow window used in Fig. 6.12 (Gaussian smoothed with FWHM = 2.5 mm).

Figure 6.15: The total entropy change for 4 patient scans. The entropy in each
individual plane (not shown here) decreased for all the studies.
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Figure 6.16: Selected transaxial, sagittal and coronal planes, with and wit-
hout compensation for residual motion. Top: reconstructed image with mo-
tion compensation based on optical tracking data; Middle: reconstructed image
with further compensation by the proposed approach; Bottom: reference image
reconstructed from a static scan.
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6.4 Discussion

In this paper, the simulation studies were performed with a (simulated) 64-
row CT scanner, while the patient studies were performed with a 96-row CT,
and the phantom study was performed with a 16-row CT. In other tests (not
shown here), the method performed well for data from scanners with different
row numbers as well, but the performance of the proposed approach was found
to be better in the case of a higher number of detector rows, as expected since
a wider detector provides more information in a single projection view. For
the data from a scanner with a narrower detector, a stronger smoothing was
needed to suppress the noise on the estimated motions (Table 6.1).

The large number of CT views in clinical scans creates an impressive computa-
tional challenge. Currently, the time for estimating the motion is about 2 hours
for a single patient scan (from Siemens Force scanner), while the time for the
final iterative reconstruction is about 12 hours (a high number of updates is re-
quired to obtain a quality comparable to the vendor images). A possible way to
accelerate the final reconstruction is to replace the iterative reconstruction al-
gorithm with a dedicated motion-sensitive analytical reconstruction algorithm.
This is under development by the authors.

As illustrated in Fig 6.8, the proposed approach performed well even for rela-
tively large patient motion. In our simulations, the proposed approach usually
worked well when the amplitude of the rotations was less than 10◦ and ampli-
tude of the translations was less than 20 mm, which in our opinion are unlikely
to be exceeded in most clinical scans. Nevertheless, we observed that it did
not perform well in cases of severe motion such as that of Fig. 6.6b. We have
shown previously that optical motion tracking methods are effective, even for
very severe motion (Kim et al. 2015b, 2016). As shown in Section 6.3.3, the pro-
posed approach can refine the tracker based motion estimation. Consequently,
combining both methods would relax the specifications for the tracking device
significantly and at the same time provide accurate motion compensation even
in the presence of very severe motion.

The multi-resolution technique accelerated the motion estimation algorithm.
Using too coarse a starting resolution, however, should be avoided because
the excessive blurring may suppress important high-frequency features. We
observed that this can lead to an overestimation of the motion.

We ignored estimating the translation perpendicular to the detector in every
projection view. We repeated the simulation studies in Section 6.3.1, where
that translation was estimated and compensated too. The results (not shown)
indicated that compensating for that translation had no or a negligible effect on
the quality of the corrected image. Considering the additional time to estimate
that particular motion, we did not take it into account in our studies.

The estimated motion is not always identical to the true motion. First, the
pose of the reconstructed object is arbitrary, and probably roughly corresponds
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to the average pose during the scan. Moreover, slow components of the motions
may not be fully estimated, but instead partly be incorporated as a gradual
and almost rigid distortion of the image along the z-axis. Such a small distor-
tion can be observed in the phantom image of Fig.6.16 (middle). These small
distortions are not expected to have an adverse effect on the diagnostic value
of the image.

The proposed approach relies on 2D-3D image registration, and is therefore
expected to be less effective when the contrast in the object is low. In CT
brain imaging, the high contrast between the skull and soft tissue was found
to provide adequate information for estimating the motion. For other possible
applications where the contrast would be lower, pre-processing to enhance the
contrast of the raw projection data might be necessary.

We only considered the application on diagnostic CT where the noise in the
raw data is typically very low. We performed a noisy simulation, in which
the proposed approach worked fine even with relatively high Poisson noise. We
think one reason is that most of the artifacts were already eliminated during the
early resolution levels, which had smooth image updates as the pixel size was
large. Still, it would be interesting to investigate how the proposed approach
works on the data from low dose CT scans.

The motion was estimated using an analytical expression based on a lineari-
zation. Instead, a more accurate non-linear least squares algorithm could be
used. However, that approach would have a much larger computational cost.
The linearization approximation becomes better closer to convergence, and the
experimental results indicate that even for large motions it is good enough to
improve the estimate in every JIM-iteration.

In our current approach, an independent rigid motion was estimated for every
view. The method could be further improved by modelling the motion as a
parameterized function of time (or view number) (Clackdoyle et al. 2015; Yu et
al. 2011). This would reduce the number of unknowns and impose a physically
meaningful smoothness to the estimated motion.

6.5 Conclusion

In this paper, we proposed a rigid motion estimation and compensation ap-
proach for helical X-ray CT of the head, for which the only required input is
the measured raw data. Since no additional measurements are needed, it can
be applied retrospectively to standard helical CT data. We believe that, when
sufficiently accelerated, it can become a valuable clinical tool, since it would
reduce the need for anaesthesia or sedation in children and other patients who
are likely to move, and decrease the number of repeat scans. Further testing
of the method with more clinical data is ongoing.
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Appendix A

This section explains how the rigid motion parameters in the detector coordi-
nate system are transformed to a homogeneous matrix in the world coordinate
system. From Eq. 6.3, we have 5 degrees-of-freedom for each projection view
θ:

Sdetector = (ϕu, ϕv, ϕz, tu, tz)
T

Transform Sdetector into homogeneous matrix:

Tdetector =


cosϕz − sinϕz 0 0
sinϕz cosϕz 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 cosϕu − sinϕu 0
0 sinϕu cosϕu 0
0 0 0 1


cosϕv 0 sinϕv 0

0 1 0 0
− sinϕv 0 cosϕv 0

0 0 0 1




1 0 0 tu
0 1 0 0
0 0 1 tz
0 0 0 1


Now the motion is in detector coordinate system, we still need to map Tdetector
into world coordinate system:

Tworld =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 toffset
0 0 0 1

 · Tdetector
where toffset is the offset between the world and detector system in the direction
of bed movement.
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A motion compensation ap-
proach for dental cone-beam
region-of-interest imaging

This chapter is modified based on the publication: T. Sun, J. Nuyts, R. Fulton,
“A motion compensation approach for dental cone-beam region-of-interest ima-
ging,” in Conference Record of International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine, Xi’an, China, 2017.

Purpose Motion of the patient affects image quality in dental cone-beam ima-
ging. While efforts are always made to minimize motion during the scan,
relatively little attention has been given to methods of compensating for
the motion during the reconstruction of the image.

Method In a previous study, we proposed an approach to iteratively estimate
and compensate for rigid head motion within the reconstruction process
for helical CT. This study reports on an extension of this method to
mitigate the effect of the limited FOV in the dental scan. We assume the
motion in a dental scan that we are dealing with is strictly rigid.

Results The new method was evaluated both in simulations and a phantom
scan. The quality of the reconstructed images was improved substanti-
ally after motion compensation. The proposed approach eliminated most
of the motion-induced artifacts in dental ROI imaging. Although some
residual resolution loss was observed.
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Conclusions The preliminary results indicate that the proposed motion cor-
rection approach is effective for dental CT scans, where the rigid motion
is present.

Personal contribution The PhD student proposed the methodology, with
contribution from Johan Nuyts. Simulation and phantom data were col-
lected by the student. Software was implemented, evaluated and opti-
mized by the PhD student, who also drafted the manuscript. The co-
authors Johan Nuyts and Roger Fulton contributed to the editing of the
manuscript.

7.1 Introduction

Patient motion is one of the main causes of visible image artifacts in oral
and maxillofacial cone-beam CT imaging. Dental imaging most commonly
uses cone-beam CT, which requires a longer scan time and thus increases the
probability of patient motion during the examination, compared to clinical
multi-row CT. For example some patients, in particular children could move
their head during a scan, due to fear of the scanner movement. Also in practice,
it is difficult to prevent aged patients with mental disease, e.g. Parkinson’s
disease from movement. In a study (Donaldson et al. 2013), it was found that
about 18 % of the youth and 24 % of the aged subjects were likely to move in
the scan, which induces motion artifacts in the reconstructed images.

The motion artifacts in the reconstructed image can degrade the image quality,
adversely affecting diagnosis or treatment planning (Donaldson et al. 2013;
Hanzelka et al. 2013; Pauwels et al. 2015; Spin-Neto et al. 2013; Spin-Neto et
al. 2016). Even though sometimes the movement is too small to be noticed by
human eyes, the reconstructed image can still suffer from a loss of resolution.
Hence the resolution of the flat panel detector would not be the limiting factor
of the image resolution but the motion is. Further problems arise when metal
implants are present together with the movement (Nardi et al. 2015). All these
may induce the retake of the scans, which inevitably causes additional radiation
dose to the subjects.

Various efforts have been made to prevent patient motion during a scan. It is
often suggested an examiner should instruct a subject to close their eyes and
be prepared for the scanner movement prior to an acquisition. During a scan,
patients are sometimes immobilized with a head strap, and/or a chin holder.
However, solely relying on the hardware to fix the head might not prevent all
possible movements (Hanzelka et al. 2013; Nardi et al. 2017).

Relatively little research has focused on methods to reduce motion artifacts in
the reconstructed images for dental CT scans. One recent work demonstrates
the potential to track the movement of the head using an optical camera (Spin-
Neto et al. 2017). More approaches have been focusing on other cone-beam CT
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systems or clinical multi-row CT systems. Similar to Spin-Neto et al. (2017), a
motion detection approach was invented but for clinical head CT scans (Kim
et al. 2015b), and the corresponding compensation was proposed. Some appro-
aches detect the motion by tracking artificial or anatomical landmarks in the
image or projections (Lu et al. 2002; Ritchie et al. 1996). Others minimize an
image-based cost-function which is sensitive to motion artifacts to estimate the
motion (Kingston et al. 2011; Kyriakou et al. 2008; Rohkohl et al. 2013).

Previously we have described an iterative method to estimate and compensate
the head motion in clinical CT scans (Sun et al. 2016). In the present study, we
extend that approach to dental CT imaging. In the following context, we as-
sume the motion happens in a dental scan is strictly rigid. We will describe how
the previous method has been adapted to overcome new challenges encountered
in this application. The proposed approach is evaluated in both simulations
and a phantom study, comparing motion-compensated reconstruction to recon-
struction from motion-free data. Throughout the following context, we define
the full field-of-view (FFOV) as the entire reconstructed region, ROI as the
fully sampled region which is the same as the scan FOV, background as the
region outside ROI and within the FFOV.

7.2 Methods

7.2.1 A revisit of previous approach

Our previously described approach performs rigid motion correction on clinical
helical CT scans (Sun et al. 2016). That method assumes that the rigid pose
(motion) of the measured object may be different for each projection view. The
coordinates system are defined as in Fig. 7.1. A rigid transformation repre-
senting the object pose can be estimated (Motion Estimation in Fig. 7.2) by a
3D-2D registration process for every view. The translation perpendicular to the
detector was neglected because estimating it was found to have negligible effect
on the corrected image. The remaining five rigid parameters were estimated
in a sequential way at each projection view. The sequence of the parameter
estimation was translation first, then rotation. The newly estimated parameter
values were used immediately when estimating the value of the next parameter.
This sequential estimation of five motion parameters for all projection views
completes the update of the rigid motion at the current iteration.

A compensation for changes in pose during the scan is applied in the recon-
struction by incorporating the motion into the system matrix (“recon” in Fig.
7.2). Ordered Subsets Expectation Maximization (Hudson et al. 1994) was
used as the reconstruction algorithm. Instead of moving the reconstructing
image in every view, rigid motion compensation is done by considering a coor-
dinate system fixed to the object and incorporating the motion (now associated
to the source-detector pair) into the system matrix. This corresponds to an
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Figure 7.1: In one view, (a) the detector coordinate system (blue solid arrows)
and (b) scanner coordinate system (black dashed arrows), the center of these
two systems coincide with each other. Motion estimation is based on detector
system. Motion compensation in all views is based on scanner system.

arbitrary 3D rigid motion of a virtual gantry around the object being scanned,
created by the superposition of the inverse of the object motion on the helical
trajectory.

The motion-corrected image and the motion estimate are alternately updated
to increase the likelihood, and the iterations are stopped when the estimated
motion seems to have converged. A multiresolution approach was applied to
accelerate the computation. There is a resampling with a factor of two between
adjacent levels. A similar multi-resolution approach can be also applied in
the projection domain. The proposed approach has been shown to effectively
suppress the motion artifacts in helical CT scans with different setups.

7.2.2 New challenge in dental ROI imaging

Some important differences exist between clinical multi-row CT and the cone-
beam CT, which may affect ME/MC (motion estimation and motion com-
pensation) on a dental scan. The most significant are the differences in ax-
ial and transaxial truncation. In a circular scan the constant axial FOV in
dental cone-beam CT is expected to facilitate ME/MC. On the other hand,
dental cone-beam CT typically uses transaxial truncation to reduce the irra-
diated volume, which is expected to adversely affect ME/MC. Specifically, the
ME step is based on re-projection, requiring a FFOV reconstructed image,
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Figure 7.2: General Motion Estimation/ Motion Compensation (ME/MC)
scheme in (Sun et al. 2016). One iteration of ME/MC involves 1 ME step
and 1 MC step. One ME step attempts to adjust the object pose at each
view to minimize the difference between the measured projections and the re-
projected object. One MC step compensates for the motion during the scan in
a reconstruction process, by incorporating the current motion estimates into
the system matrix.

81



Chapter 7. Rigid motion correction for cone-beam CT

which is not available in an ROI scan. In addition, the MC step uses an ite-
rative reconstruction, which also requires a FFOV reconstructed image during
forward/back-projection. Hence insufficient information outside the fully sam-
pled ROI in a reconstructed image could induce errors when using above the
ME/MC scheme. These errors could be streak artifacts in the reconstructed
image after every iteration of MC, and inaccurate estimated motion after every
iteration of ME.

Another concern is that the information in the background, while not of clinical
importance, is required by an iterative reconstruction algorithm. An analytical
reconstruction algorithm such as FDK (Feldkamp et al. 1984) can restrict the
computations to the ROI, making it very efficient for such applications. In
contrast, when an iterative reconstruction algorithm is used, the entire object
must be reconstructed. Since our current motion compensation approach relies
on iterative reconstruction, there is value in minimizing the amount of com-
putations devoted to the background, without compromising on reducing the
motion artifacts.

7.2.3 Improved Patch-based ME/MC

In this study, we propose a patch-based ME/MC. By applying this technique,
we believe the two concerns in the last section can be mitigated.

Patch-based reconstruction

Let us first introduce the reconstruction algorithm used in this paper. We use
a Maximum Likelihood algorithm to perform the reconstruction. Ignoring the
polychromatic sources and scattering effect, the Poisson log-posterior function
of the attenuation is:

Φ(µ) = yi ln ŷi − ŷi − λR(µ) (7.1)

i is the index of the projection line, yi is the measured transmission scan at i, ŷi
is the estimated transmission scan at i computed from the current reconstructed
image µ = {µj}, where µj is the linear attenuation coefficient at voxel j. R(µ)
is the logrithm of the penalty, multiplied with −1 to turn it into a log-prior,
and λ is the weighting factor. By maximizing the above function, one is able
to find the optimal attenuation image iteratively. For example, when no prior
information is available, the update function of MLTR is as follows (Nuyts et
al. 1998):

µnewj = µj +

∑
i aij(ŷi − yi)∑
i aij(

∑
h aih)ŷi

(7.2)
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where aij is the intersection length of projection line i with voxel j. Motion
correction can be incorporated by adjusting the system matrix on-the-fly ac-
cording to the known rigid motion.

Patch-based reconstruction approaches have been proposed for various appli-
cations in CT imaging (Fessler et al. 1997; Van Slambrouck et al. 2012; Yu
et al. 2006). The idea is that a reconstruction volume can be divided into
interesting patches and not-so-important patches. For each of these patches
a different resolution model can be defined. The voxel weighting factor plays
an important role in convergence of the attenuation values at each voxel. The
patches are updated sequentially, each patch is considered as a group of pixels
in a grouped coordinate algorithm. Sequentially updating groups of pixels is
known to improve convergence, e.g. in the modified update equation of MLTR
(Eq. 7.3), the denominator of the update steps will be smaller when the area
of the updated patch is smaller.

µnewj = µj +
αj
∑
i aij(ŷi − yi)∑

i aij(
∑
h aihαh)ŷi

(7.3)

where

{
αj = 1 if j ∈ patch
αj = 0 if j /∈ patch

is the voxel weighting.

Patch-based ME/MC

Patch-based ME/MC used above described Patch-based reconstruction. To
implement a patch-based ME/MC, we need to define two patches for dental ROI
imaging (Fig. 7.3a). We first performed an initial FFOV FDK reconstruction,
and then defined one high-res patch and one low-res patch by thresholding
and dilating. The resulting high-res patch contains the teeth inside the fully
sampled ROI, where a smaller voxel size is used; the resulting low-res patch
comprises the remainder of the FFOV, where a coarser sampling is used.

Specifically, both ME and MC need to be adjusted for the patch-based imple-
mentation. For ME, the re-projection process involves the forward projecti-
ons with different resolutions for different patches. For MC (iterative recon-
struction), each update of the image can be divided into 2 steps (Fig. 7.3b)
a first update performed only in the high-res patch, and a sequential update
performed in low-res patch only:

(1) First update on high-res patch
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We want the high-res patch to contain the high contrast structures, i.e. the
teeth and the surrounding structures inside the fully sampled ROI, because
they provide the most useful information for ME. During a reconstruction in
MC (Fig. 7.2), the first update was limited to voxels within the high-res patch
using Eq. 7.3. L1-norm total variation (TV) regularization (Sidky et al. 2008)
was applied in the iterative reconstruction to preserve the high-frequency struc-
tures while reducing the streak artifacts surrounding the teeth in the high-res
patch.

(2) Sequential update on low-res patch

Following the first update in the high-res patch, a sequential update was perfor-
med for the low-res patch. The voxel size in the low-res patch is 4 times larger
than the one in the high-res patch. Eq. 7.3 performed updates for low-res
patch, within which voxels are updated.

7.2.4 Final reconstruction

On completion of the iterative Patch-based ME/MC process, an initial cor-
rected image is available. In this image only the teeth (high-res patch) are
with fine resolution. To produce an image with diagnostic quality, a final fine-
resolution reconstruction in the FOV is still required. In the following simulati-
ons, iterative reconstruction was used in the final reconstruction and patched-
based reconstruction was used to accelerate the iterative reconstruction. The
patches were defined differently from the ones in the estimation. The high-res
patch contained the scan FOV (red circle in Fig. 7.3b), while the rest of the
FFOV is low-res patch. The update strategy was the same as in the estima-
tion. To accelerate this reconstruction, the starting image was created from an
FDK reconstruction with the estimated motion. For this purpose, an approx-
imate circular FDK algorithm was implemented, where a first order motion
compensation is obtained by taking the motion for each view into account in
the back-projection step. In contrast, in the phantom study, an FDK recon-
struction image was produced as final reconstructed image, which is restricted
to the scan FOV only. This is because of the fact that the motion to be esti-
mated in this study is small, and for a real scan an analytical reconstruction is
often much faster than an iterative reconstruction.

7.3 Simulations

7.3.1 Phantom and motion

A digital phantom (Fig. 7.4) was used in all simulations. It was discretized
into an image of 256×256×70 voxels with a voxel size of 1.0×1.0×1.0 mm3. A
detector with 200×80 detector pixels of 1.0×1.0 mm2 was simulated to create
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Figure 7.3: (a) The patch definition for dental ROI imaging. (b) The patch-
based reconstruction of a single iterative process in MC. A first update was
only performed in the high-res patch, and a sequential update was performed
in the low-res patch. The red circle indicates the scan FOV.
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the transaxially truncated projections in dental imaging. The distance between
the X-ray source and the detector was 575.0 mm, the distance between the
detector and the rotation center was 216.5 mm. The scan FOV diameter was
about 125.0 mm.

Two segments of rigid head motion of a volunteer recorded over a 5 s period
(Fig. 7.5) were applied to the digital phantom while cone-beam projections
were computed. The total simulated scan duration was also 5 s. The total
number of views was 360 covering 1 full rotation (360◦). The motion was
simulated by applying the inverse motion to the CT-detector gantry for each
individual view. Like for clinical multi-row CT, we have the assumption that
the motion within one cone-beam projection view is negligible. Hence there
was no motion simulated within one projection view.

Figure 7.4: The digital phantom used in the simulations. From left to right:
selected transaxial, coronal and sagittal slice through the phantom.

7.3.2 Design of experiments

From a set of simulated motion-contaminated projections, we computed the
reconstructed images from four different experiments: one with the compen-
sation using the exact simulated motion, one without any compensation, one
with ME/MC and one with Patch-based ME/MC. We aimed to compare the
image quality and computation time for all images. Details of how these images
were obtained are listed below:

(1) A reference image was obtained from an MLTR reconstruction with the
exact simulated motion taken into account, starting from an initial-corrected
FDK image. Distance-driven projection is used for interpolation during the
forward and back-projection (De Man et al. 2004). The iterative reconstruction
parameters were: 4 reconstruction iterations, 40 subsets, voxel size 1.0×1.0×1.0
mm3.

(2) An MLTR reconstruction was performed, starting from an initial FDK
reconstruction. No motion compensation was applied. The iterative recon-
struction parameters were the same as in (1).

(3) The total number of ME/MC iterations was 40 (Fig. 7.2). In one MC, the
patched MLTR algorithm updated the FFOV image (4 reconstruction iterations
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Figure 7.5: The recorded rigid motion segments (a) and (b) which were used
to generate the motion-contaminated projections. The motion themselves and
details of how it was recorded can be found in (Kim et al. 2015b).

40 subsets). The resolution in the high-res patch is four times higher (along each
direction) than the one in the low-res patch. A final MLTR reconstruction was
performed with the final estimated motion taken into account, starting from
an initial-corrected FDK image.

(4) The total number of iterations of ME/MC was 40. In one MC, the patched
MLTR algorithm updated the FFOV image (4 reconstruction iterations 40
subsets). The high-res patch are updated with TV regularization. In one ME,
re-projection was done by combining the forward projections of the two patches.
A final MLTR reconstruction was performed with the final estimated motion
taken into account, starting from an initial-corrected FDK image.

7.3.3 Results

Fig. 7.6 shows the resulting images from the simulation experiments. For
both simulations with motion from Fig. 7.5a and Fig. 7.5b, compared with the
reference image, the image without any compensation was clearly contaminated
by motion artifacts (red arrow). After applying ME/MC to the measured
data, most of the artifacts were suppressed (after 15 iterations of ME/MC,
the improvement on motion estimation stopped). But there was still some
resolution loss. Patch-based ME/MC reduced this resolution loss and did so at
lower computation time with the same number of iterations. This is confirmed
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in the plot of convergence in Fig. 7.7.

Figure 7.6: The final reconstructed images in the simlation studies. (a) refe-
rence image. (b) results from the simulation with motion in Fig. 7.5a. (c)
results from the simulation with motion in Fig. 7.5b. From left to right in
(b) and (c) — the image without compensation; the image with ME/MC; the
image with Patch-based ME/MC.

7.4 Phantom study

7.4.1 Design of the study

Phantom scans were performed on an Accuitomo 170 scanner (J Morita Mfg.
Inc., Kyoto, Japan) in Oral and Maxillo-facial Surgery Department of the
UZ Leuven. The anthropomorphic phantom used in this study is the Secti-
onal Head Phantom SK150 (Phantom Laboratories, Salem, NY, USA). This
phantom has an internal air cavity representing the oral, pharynx and trachea
anatomy. The scan setup is shown in Fig. 7.8. The scan was a full rotation
scan with 512 views, and lasts for about 30 s, within which 10 s is the irra-
diation time. Other scan parameters were: detector size 940 × 748; detector
pixels pitch of 0.2 × 0.2 mm2; FOV diameter 140 mm; distance between the
X-ray source and the detector 842.0 mm; distance between the detector and
the rotation center 302.0 mm.

A movement scan was first performed. Prior to that scan, the phantom was
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Figure 7.7: Restoration of the image quality by ME/MC (black) and Patch-
based ME/MC (red) for simulation with motion in Fig. 7.5a. The residual
ROI errors (squared difference between corrected and the reference image) were
measured. With 40 iterations, the total time of ME/MC was 2h13m, the time
of the Patch-based ME/MC was 1h15m.

attached to a string and placed at the center of the scanner FOV. The rigid
motion was induced by pulling a string attached to the phantom during the
middle of the scan - 5 s after the start of the scan, the examiner pulled the
string from outside the examining room. The induced motion was expected
to be large enough to create artifacts in the reconstructed image. After the
movement scan, a static scan was performed to produce a reference image.
Scan parameters in this scan remained the same as the ones in the movement
scan.

Three images were generated from above the two scans:

(1) Machine reconstruction of a static scan was exported and used as the refe-
rence image. The reconstruction image size was 561× 561× 401, pixel size was
0.25× 0.25× 0.25 mm3;

(2) Machine reconstruction of the moving scan was also exported. The dimen-
sion of this image was the same as one in (1). No motion compensation was
applied;

(3) Raw data were exported for the movement scan, and from that motion
estimation was performed. Different from simulations, the views possibly with
movement were first identified by checking the projections visually, and the
subsequent motion estimation was only performed for those views. Then as in
Section 7.2, Patch-based ME/MC performed the motion estimation by upda-
ting the motion and the image alternately (11 iterations). As the motion in
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Figure 7.8: Phantom study setup. An anthrophonic phantom was positioned
at the center of the scanner FOV.
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the phantom study was small, final motion compensation was performed in an
FDK reconstruction with the same resolution as in the machine reconstruction.
The dimension and the pixel size of the reconstructed image were the same as
the ones in (1).

7.4.2 Results

Fig. 7.9 shows the selected planes from the resulting images in the phantom
study. Compared with the reference image, the image without any compensa-
tion was clearly inferior and contaminated with artifacts. After applying the
proposed approach to the raw data, most of the artifacts were eliminated (after
8 iterations of patched ME/MC and final reconstruction). The total running
time is about 2 hours, during which motion estimation took 1.8 hours. There
are still some residual streaks and blurring, currently we are finding out the
reason of that.

Figure 7.9: Left is a 2D transaxial plane in the reference image. Middle is the
same plane in the uncorrected image. Right is the same plane in the corrected
image, where artifacts are much less than the middle one. Note that we have
also performed our own reconstruction for the static scan (not shown), and the
resulted image looks quite similar to the machine reconstruction.

7.5 Discussion

In this manuscript, we proposed a rigid motion estimation and compensation
approach for dental cone-beam CT imaging with transaxial truncation, the
implementation of which only requires the measured raw data. Since no addi-
tional measurements are needed, it can be applied retrospectively to any dental
scans. Note that the motion in the phantom scan was assumed and modelled
as rigid motion of an object across views. In some more complicate scenarios,
a different motion model may be required. For example, non-rigid movement
of tissues could be present due to swallowing, or different moving patterns bet-
ween the upper and lower jaws might exist. The proposed approach is expected
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to fail in such cases. How to deal with scans in the presence of such movements
is beyond the scope of this manuscript.

The proposed approach works reasonably well despite the severe artifacts out-
side the high-res patch, where the reconstruction is handicapped by a limited
angle problem. It has been previously shown that the high-res patch can in
principle be reconstructed exactly if it contains a portion of air background
(intensity known to be zero) (Defrise et al. 2006), which is often the case in
dental imaging. Moreover, even in the background, spatial frequencies are bet-
ter reconstructed if they contribute more information to the measured projecti-
ons (typically edges which are parallel to the projection lines). This implies
that the reconstructed low-res patch still contains the relevant edges needed to
align measured and forward projected views, which is the essence of the original
ME/MC scheme.

The proposed motion correction is not perfect (as in Fig. 7.9). One reason,
as described previously, is that background cannot be reconstructed exactly,
which may propagate the errors of non-exact reconstruction into ME. Another
potential cause of the inaccuracy is that we assume the movement only happen
in between views. When any movement is fast enough to happen within one
projection view, the proposed approach may not be able to compensate the
effect of that. Given the fact that the exposure time of one projection view
in cone-beam CT is 200-500 ms, such movement within views might not be
negligible.

Unlike a clinical helical CT-scan, a normal dental scan has a smaller number
of views (300-700) acquired in a full or half rotation. Hence the computation
requirement to apply the compensation in dental imaging is less demanding.
Currently, the entire Patch-based ME/MC process takes ∼ 2 hours (1.8 hour
ME/MC iterations and 0.2 hours final reconstruction) in the phantom study.
The processing time on a real patient scan is expected to be similar. By intro-
ducing proper acceleration techniques, the processing time can be significantly
reduced. However, when the motion to be compensated is large, one will have
to introduce an iterative algorithm to the final reconstruction, or to implement
a motion-sensitive analytical reconstruction algorithm.

Various factors could affect the motion compensation effect in a real patient
scan and require further examination. For example, (1) a smaller size of the
FOV captures less information in measurement, which may degrade the mo-
tion estimation results; (2) offset scan mode is sometimes available on some
scanners. With such mode, measure projections are truncated in all views, al-
lowing a small detector extend to cover large FOV. The truncated projections
may present a challenge for motion estimation; (3) It is expected that a half
scan typically suffers more cone-beam artifacts but less motion artifacts due to
the shorter scan time, compared with a full rotation scan. Whether using a half
scan mode would affect ME/MC or not remains to be checked; (4) Last but not
the least, together with motion, presence of dental implants could complicate
the artifacts in a reconstruction image. A metal artifacts correction technique
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would be needed to combine with the proposed motion correction technique,
to simultaneously mitigate the motion and metal artifacts.

7.6 Conclusion

In this preliminary study, we proposed an approach to compensate the rigid mo-
tion artifacts in dental ROI imaging. Results from simulations and a phantom
study are presented. The improvement on the image quality was encouraging
and further testing on clinical data is warranted.
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Chapter 8

Estimation of local data-
insufficiency in motion-corrected
helical CT

This chapter is modified based on the publication: T. Sun, R. Clackdoyle,
J.H. Kim, R. Fulton, and J. Nuyts, “Estimation of local data-insufficiency
in motion-corrected helical CT,” IEEE Transaction on Radiation and Plasma
Medicine Science, vol. 1, no. 4, pp. 346-357, July 2017.

Purpose Previously we have proposed a reconstruction algorithm which cor-
rects for known rigid motion in helical CT. This work describes a method
to determine data-insufficiency of helical CT data affected by rigid object
motion. We propose a local measure that quantifies the degree to which
Tuy’s completeness condition is violated in each voxel. This measure
identifies regions for which artifact-free reconstruction is not assured.

Method For every voxel, a local data-insufficiency measure is computed. We
call the resulting image the Tuy map. Its values range from 0 to 1,
where high values indicate data-insufficiency. As shown by classic theory,
exact reconstruction is not possible where the Tuy map contains high va-
lues. The predictions based on this Tuy map were verified with simulated
helical-CT data, where the object moved during the scan and the rigid
motion was correctly taken into account during reconstruction. We also
analyzed the reconstruction from an actual motion-corrected CT-scan of
a moving phantom.
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Results For motion-free helical scans, the Tuy map was close to zero everyw-
here and the reconstructions were artifact-free. Rigid motion induces an
effective source trajectory (with respect to a stationary patient) which,
combined with axial or even transaxial truncation, can cause incomplete
sampling. In simulations with severe motion or transaxial detector trun-
cation, the Tuy map contained high values and the reconstructions suffe-
red from artifacts. In the phantom scan, the combination of a high pitch
and severe motion created artifacts which the Tuy map successfully in-
dicated. In all cases, the Tuy map indicated all regions with incomplete
sampling which were prone to reconstruction artifacts. However, we also
contrived a special case, where exact reconstruction was not assured alt-
hough the local Tuy’s condition was satisfied.

Conclusions The proposed approach provides a useful measure of data-incomp
-leteness, which can be used to verify the validity of motion-corrected he-
lical CT scans. The method is general and could also be useful for other
tomographic problems for which no exact data-sufficiency measures are
available.

Personal contribution The PhD student proposed the methodology, with
contribution from Johan Nuyts and Rolf Clackdoyle. Phantom data were
collected with the help of Jung-Ha Kim. Simulation was performed by
the PhD student. Software was implemented, evaluated and optimized by
the PhD student, who also drafted the manuscript. The co-authors Rolf
Clackdoyle, Johan Nuyts, Roger Fulton and Jung-Ha Kim contributed to
the editing of the manuscript.

8.1 Introduction

Motion is one of the main causes of resolution loss and artifacts in head CT
imaging. We have previously developed a reconstruction method that corrects
for known rigid motion in helical CT scanning of the head (Nuyts et al. 2011).
The motion can be measured using an external, marker-based motion tracking
device (Kim et al. 2015b, 2016) or it can be derived from the CT-data them-
selves (Sun et al. 2016). The motion correction is achieved by incorporating
the known rigid motion into the system matrix of an iterative reconstruction
algorithm.

Our simulation and phantom experiments indicate that with appropriate mo-
tion correction, the reconstructed images are generally artifact-free. However,
in some cases the motion-corrected images do have artifacts, even if the exact
motion model is used during the reconstruction (Kim et al. 2016). We have
provided evidence that this is due to data-insufficiency - i.e. in some cases the
combination of head motion and scanner rotation limits projection sampling
to the extent that artifact-free reconstruction is no longer assured at all points
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within the object. This is purely due to a limitation of the data, rather than
the motion compensation scheme.

We assume all motion involved in this study are rigid. Patient motion during
the scan effectively changes the acquisition source trajectory: in a coordinate
system attached to the object, the CT detector and source can follow an arbi-
trary trajectory, created by the combination of the rigid patient motion with
the ideal helical trajectory. The intended helical trajectory provides sufficient
data for “exact” reconstruction, but this is not guaranteed for the modified
trajectory created by the additional patient motion. “Exact” here means that
in the ideal continuous case, the trajectory produces data that are sufficient for
accurate and stable reconstruction. Experience shows that when theoretical
analysis predicts exact reconstruction, accurate reconstructions are obtained
in practice with analytical and/or iterative algorithms, in spite of the unavoi-
dable discretization (to model the finite number of measurements) and in spite
of deviations from the ideal model, such as noise, scatter, etc. provided these
are not excessive.

Consequently, a method is needed to assess the inherent data-sufficiency of
the motion-corrected CT trajectory that is independent of the choice of re-
construction algorithm. This method would give a warning when the CT-scan
does not provide sufficient data without having to reconstruct the images. It
is important to identify regions of data-insufficiency, because artifacts may not
always be recognized as such and may adversely affect the diagnosis. In ad-
dition, such a method would provide a tool to study how the combination
of typical patient motions with different CT-scan parameters (rotation speed,
pitch, axial detector size etc.) affect data-sufficiency. This tool would facilitate
the definition of CT acquisition protocols that are robust to patient motion
(Kim et al. 2016). Finally, it would also be a useful tool for quality control: if
artifacts are observed that cannot be attributed to data-insufficiency, then the
imaging procedure has a problem that must be identified and corrected.

However, the assessment of data-sufficiency (or insufficiency) in motion-corrected
helical CT faces two problems. First, for cone-beam CT with truncation and
an arbitrary source trajectory, there is currently no complete theory that can
tell whether a particular voxel can be reconstructed exactly or not (Clackdoyle
2005). Second, even with untruncated data, the existing analytical methods
only provide a binary answer, whereas for practical use, it would be preferable
to obtain a degree of data-insufficiency. These two issues are discussed in the
next two paragraphs.

Orlov (1975) derived a data-sufficiency condition for untruncated parallel-beam
tomography. Tuy (1983) extended this to a data-sufficiency condition for un-
truncated cone-beam tomography. Metzler et al. (2003a) have identified a
geometrical connection between the Orlov and Tuy sampling criteria. In that
work they proposed an algorithm to compute the largest completely sampled
region for arbitrary orbits in cone-beam and parallel-beam tomography. The
algorithm assumes untrucated projections and verifies for each voxel if it be-
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longs to the completely sampled region or not. Unfortunately, in helical CT, all
projections are truncated due to the limited axial detector size, and transaxial
truncation exists in an ROI scan. For helical trajectories with axial truncation
only, data-sufficiency theory has been established (Kudo et al. 2004; Wang et al.
2007). However, there is currently no data-sufficiency condition for truncated
projections that is general enough to deal with an arbitrary trajectory, such
as the effective trajectory caused by rigid patient motion. By inverting Tuy’s
condition, Finch (1985) established a local data-insufficiency condition that
applies to untruncated and truncated projections. This will enable us at least
to identify locations where the arbitrary source trajectory definitely created
data-insufficiency, but unfortunately, it may fail to identify all such locations.
One aim of this contribution is to verify how useful this local Tuy’s condition
is as a predictor of artifacts and in which cases it may fail.

In addition, as previously mentioned, where analytical data-sufficiency conditi-
ons can be applied, they provide a binary answer: at each voxel location, exact
reconstruction is either possible or not. In practice, it is preferable to have
a method that provides a degree of insufficiency. As an example, Tuy’s con-
dition implies that with circular cone-beam tomography, exact reconstruction
is only possible for the central plane. Experience shows that in practice, ex-
cellent reconstructions are also obtained for other nearby planes; the so-called
cone-beam artifacts only become problematic for planes far from the central
one. This agrees with the intuitive understanding that Tuy’s condition is “more
violated”in planes more distant from the central plane. Practical methods to
determine the degree of sampling insufficiency have been proposed for various
geometries. Metzler et al. (2003b) proposed a metric of measuring sampling suf-
ficiency for a pinhole SPECT (single-photon emission computed tomography)
system. Clackdoyle et al. (2001) provided a quantitative prediction about data-
sufficiency in cone-beam reconstruction for a hypothetical pinhole SPECT sy-
stem for breast imaging. Liu et al. (2012) proposed a completeness map for
several candidate cardiac CT system designs.

Also analytical algorithms could be used to study data-insufficiency. Analytical
algorithms similar to filtered backprojection make strong assumptions about
the trajectory of the X-ray source. In contrast, analytical reconstruction al-
gorithms based on chords (Pi-lines) can reconstruct images from scans along
irregular trajectories (Ye et al. 2005). Unfortunately, the requirements of these
chord-based methods are sufficient but not necessary for exact reconstruction.
E.g., for particular voxels, severe motion could break up the trajectory into
disjoint parts, such that these voxels are not on a chord, while exact recon-
struction would still be possible (Clackdoyle et al. 2010). Yu et al. (2012)
developed a BPF algorithm that is capable of reconstructing also voxels not
lying on a chord. However, using such methods to verify if a particular point
can be reconstructed or not requires a rather extensive analysis. In addition,
the method would then produce a binary answer, not a continuous value asses-
sing the degree to which Tuy’s condition is violated.
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In this paper, we propose a measure to quantify the degree to which Tuy’s con-
dition is violated in every voxel for a CT-system with an arbitrary trajectory.
The method is general, but our focus is on motion-corrected helical CT using a
clinical system. The method is specific: voxels found to violate the local Tuy’s
condition definitely pose a reconstruction problem (Finch 1985) but its sensi-
tivity is not perfect (some regions suffering from data-insufficiency may not be
detected). The method is independent of the reconstruction algorithm, as it
identifies voxels for which the data are insufficient based on theory. We evaluate
our method with an iterative reconstruction algorithm. We verify that artifacts
appear where predicted by the method. We also study cases where the method
is expected to fail, i.e. where the reconstruction problem is not unique due to
data-insufficiency even though the local Tuy’s condition is satisfied.

8.2 Materials and Methods

8.2.1 Voxel-based Tuy map

Tuy provided a sufficient condition for exact cone-beam reconstruction from
untruncated projections: “if on every plane that intersects the object, there
exists at least one cone-beam source position, then one can reconstruct the
object” (Tuy 1983). As explained in the Introduction, we cannot directly ap-
ply Tuy’s condition to measure projection insufficiency for (motion-corrected)
helical CT, due to the inevitable projection truncation.

Finch proved the converse of Tuy’s condition: “if there is a plane which contains
no measurement lines passing through a particular voxel, then stable recon-
struction is not possible for that voxel” (Finch 1985). This condition provides
theoretical support for our incompleteness measure for arbitrary cone-beam
trajectories with truncated projections. Based on Finch’s result, we define a
voxel-based measure of data-insufficiency. We call this the local Tuy value, and
refer to the corresponding image as the Tuy map.

The overall procedure to obtain the Tuy map is as follows. To approximate the
continuous model, the size of the voxel is chosen “small enough”, i.e. smaller
than the detector pixel size. For every voxel, planes passing through the center
of that voxel are considered. For every voxel, we also define a set of measured
projection lines: we examine all the source positions of the CT acquisition,
and for each source position on the effective trajectory, the line containing the
source position and the center of the voxel is considered. If that line intersects
the detector, then we consider this line as a measured projection line.

A plane through a specified voxel can be represented by its unit normal vector,
and the measured projection lines through the voxel by the unit vectors in the
directions of the lines. The absolute values of the dot products of the projection
line vectors with the plane normal vector are computed, and the minimum is
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stored for each plane. The local Tuy value for the voxel is finally calculated
as the maximum of the stored values across all planes. This procedure finds
for each voxel the plane that most severely violates the local Tuy’s condition,
and quantifies that violation by examining the angle between the plane and the
“most parallel” projection line. If the line is in the plane (intersection angle
is zero), the value is zero. The procedure is described in more detail in Fig.
8.1, in which step 2 involves sampling of a unit hemisphere (Peterson et al.
2010).

The local Tuy values range from 0 to 1, a higher Tuy value in a particular voxel
indicates that the local Tuy’s condition is violated more severely within that
voxel. A value of zero indicates that all planes through the voxel contain at
least one measured projection line.

To clarify the meaning of the Tuy value, consider a set of 2D parallel-beam
projections acquired with an angular coverage [0, α], where α varies from 0 to
2π. It is known that the sampling is complete when α is in [π, 2π], while for α in
[0, π), the sampling is incomplete. In addition, it has often been observed that
the limited angle artifacts become worse when the angular coverage [0, α] is
further reduced. In this 2D case, the planes considered for the Tuy’s condition
reduce to lines (see Fig. 8.2). It is easy to verify that the “Tuy line” with the

largest minimum dot product |~l · ~n| makes an angle (π − α)/2 with the x-axis
when α ∈ [0, π). Therefore, the Tuy value for all voxels in the field of view

equals |~l · ~n| = sin((π−α)/2) if α ∈ [0, π) and zero elsewhere. Fig. 8.3 shows a
plot of the Tuy values. For α = 72◦, 144◦ and 180◦, sinograms of a 2D spheres
phantom have been simulated and reconstructions with MLEM were made,
illustrating that artifact severity increases with increasing Tuy value.

This approach has two sources of discretization and associated discretization
errors. The first one is the discretization created by only considering source
positions corresponding to actual CT measurements. Since a CT-scan typically
contains thousands of views per rotation, the effects of this discretization are
very small, and we found that useful Tuy maps could be obtained even with a
reduced sampling of a few hundred samples per rotation. The second discreti-
zation is determined by the number of samples on the unit hemisphere. This
number can be chosen arbitrarily, in our experience 500 samples are sufficient
to obtain useful Tuy values. The method is not affected by detector discretiza-
tion (it only uses the detector boundary to verify if a projection line intersects
the detector), nor by discretization of the image into voxels (the Tuy value
can be computed everywhere, our choice to only compute it at voxel centers is
arbitrary).

8.2.2 Scanner geometry and simulation

For different simulation experiments, helical scans were simulated for the ge-
ometry of the Siemens Definition AS CT scanner and Siemens Sensation 16
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Figure 8.1: Pseudo-code representation of the voxel-based Tuy value computa-
tion.

Figure 8.2: Example of 2D imaging with limited angle tomography α < π.
The projection lines available for a particular voxel are shown. For the plane
shown in red, the dot product between its normal ~n and the projection line is
minimum for the indicated projection ~l. The indicated plane is the one that
has the largest minimum dot product |~l · ~n|.
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Figure 8.3: Red line represents the analytical calculation of the Tuy values
at one voxel for parallel-beam geometries with angular coverage [0, α], where
α varies from 0 to 2π. The black star dots are the Tuy values calculated
according to pseudo codes. The three images are from the corresponding 2D
reconstructions when α = 72◦, 144◦ and 180◦ respectively.

scanner (Siemens Medical Solutions USA, Inc., Malvern, PA). In addition, a
phantom scan was performed on a Siemens Sensation 16 scanner (incorporated
in a PET/CT system). A sketch of the system is given in Fig. 8.4. The scan
parameters used in different studies can be found in Table 8.1.

In the simulations, we introduced a geometric mismatch with the forward model
used by the image reconstruction, by upsampling both the object and the
detector by a factor of 2 in all directions when generating the projections. We
assumed uniform blank scans, monochromatic radiation and ignored scatter in
all simulations, since we did not want any confounding effects when evaluating
the Tuy map.

When motion was present, it was simulated by applying the inverse motion to
the CT-detector gantry for each individual view. For some simulations, the
motion was based on recorded volunteer head motions, for others some (highly
artificial) motion patterns were synthesized.

8.2.3 Phantom used in simulations

For this study two software phantoms were created. The first phantom (Fig.
8.5, called the multi-sphere phantom, consisted of a large cylinder filled with
small hollow spheres. This ensured that it had sharp edges in all directions, such
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Figure 8.4: The X-ray source moves in a helical trajectory. The six degrees-
of-freedom rigid motion are shown in the given scanner coordinate system. Tz
is the translation along the z-axis (bed direction), Tx is the translation along
the x-axis, Ty is the translation along the y-axis. Rt is the rotation around the
z-axis, Rs is the rotation around the x-axis, Rc is the rotation around y-axis.

Table 8.1: Scanning parameters settings

Configuration 1 Configuration 2 Configuration 3
(Section 8.3.1,
8.3.2, 8.3.3)

(Section 8.3.4) (Section 8.3.5)

Scanner model Definition AS Sensation 16 Sensation 16
Tube voltage
(kVp)

N/A 120 N/A

Tube current
(mA)

N/A 150 N/A

Rotation time
(s)

N/A 0.5 N/A

Pitch 0.8 1.0 1.0
Angles per rota-
tion

500 1050 500

Collimation
(mm)

32× 1.2 16× 0.75 16× 0.5

Flying focus off off off
Reconstruction
pixel size (mm3)

2.0× 2.0× 1.0 1.0× 1.0× 1.0 1.6× 1.6× 1.0

Dimension 160× 160× 120 512× 512× 285 200× 200× 120
Reconstruction
updates

5 iterations, 20
subsets

6 iterations, 40
subsets

50 iterations, 20
subsets

that creation of reconstruction artifacts was likely wherever data-insufficiency
occurred. The spheres had an outer diameter of 24 mm, an inner diameter of
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20 mm and were placed on a rectangular grid of 32× 32× 24 mm3. The sphere
shell attenuation was 0.04 mm−1 (which is similar to the attenuation of cortical
bone at 70 keV). The background cylinder had a diameter of 256 mm, a height
of 192 mm and an attenuation coefficient of 0.01 mm−1. For the simulation, the
phantom was discretized using nearest neighbouring interpolation in an image
of 320× 320× 240 voxels with a voxel size of 1× 1× 0.5 mm3.

The second phantom (Fig. 8.6) was a voxelized head phantom, created from
the CT image of an anthropomorphic phantom by interpolating it to a grid of
320× 320× 240 voxels with a voxel size of 1× 1× 0.5 mm3.

After the simulation of the CT scan(s) the detectors were resampled by sum-
ming 2×2 pixels for both phantoms, as mentioned above, and the images were
reconstructed into a grid with voxels of 2× 2× 1 mm3 covering the same FOV
as used for the simulation.

Figure 8.5: Transaxial, coronal and sagittal view of the multi-sphere phantom.
The purple lines are crosshairs specifying the location of the other two ortho-
gonal slices.

Figure 8.6: Three orthogonal views of the voxelized head phantom.

8.2.4 Motion recording

For simulations, we used six degrees-of-freedom head motion data acquired
from 3 healthy volunteers using an infrared optical tracking system (Optitrack
Flex 13, Natural Point Inc, Corvallis, OR USA). One volunteer was asked to
move the head moderately, another two were asked to move their heads as
much and as rapidly as possible. The head motion was recorded while the
volunteers were lying on the CT-bed, but no CT-scan was acquired. More
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details about acquiring the motion data can be found in (Kim et al. 2016),
which also provides the recorded motions as supplementary data.

For the phantom scan, the experiment was similar to the one described in (Kim
et al. 2015b). A Hoffman brain phantom (diameter 17.5 cm, height 20.8 cm,
filled with air) was initially supported by a wedge in an elevated position on
the curved surface of the bed. Just before the scan the wedge was removed by
pulling a string from outside the room. This caused the phantom to roll from
side to side 5 or 6 times on the concave bed with diminishing amplitude for
the remainder of the scan. The movement lasted for approximately 10 s. Most
of this motion consisted of translations and rotation in the transaxial plane.
However, there was also motion out of the transaxial plane: in its original
elevated position, the axis of the phantom was not aligned to the axis of the
bed, and the phantom aligned itself while rolling on the bed. The CT-scan was
performed while the motion was recorded.

All the acquired motion data were converted to isocenter coordinates, smoot-
hed with a 2nd degree polynomial to reduce measurement jitter, and linearly
interpolated to obtain the pose at the time of each projection acquisition, as
described in (Kim et al. 2015b).

8.2.5 Reconstruction with rigid motion correction

In the presence of motion, the helical CT source trajectory is distorted into
an effective trajectory with arbitrary shape. As discussed above, an arbi-
trary effective trajectory with truncation presents challenges for analytical re-
construction algorithms, which we have avoided by using an iterative recon-
struction algorithm. In the present work we used the MLEM reconstruction
algorithm (Shepp et al. 1982). Actually, this is standard MLEM with an adjus-
ted system matrix. Instead of moving the reconstruction image, rigid motion
correction was done by considering a coordinate system fixed to the object and
incorporating the motion (now associated to the source-detector pair) into the
system matrix (Sun et al. 2016). This corresponds to an arbitrary 3D motion
of the virtual gantry around the object being scanned. Because of the high
rotation speed and the large number of views, the motion within a single view
is negligible.

The ordered subsets technique was adopted to speed up the convergence of
the iterative reconstructions (Hudson et al. 1994). The number of iterations
and subsets used in all reconstructions are specified in Table 8.1. All projec-
tors/backprojectors were implemented using the distance-driven approach (De
Man et al. 2004).

To illustrate that the Tuy map identifies fundamental data-insufficiency that
poses problems to any reconstruction algorithm (which relies on the measured
data only), all reconstructions were also performed with SART (Andersen et al.
1984).
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8.2.6 Artifact quantification

In simulations with the multi-sphere phantom, the motion-corrected recon-
structed image is likely to suffer from artifacts in cases of data-insufficiency,
because the object has spatial frequencies in all possible directions. Thus, for
this particular phantom, the occurrence and severity of reconstruction artifacts
are expected to correlate well with the degree of data-insufficiency. We perfor-
med a reconstruction of the multi-sphere phantom without motion to produce
a reference image. When rigid motion was included, the severity of artifacts
was quantified using the RMSE between the two reconstructed images, and
compared with the Tuy value map from Fig. 8.1:

RMSE =

√√√√√ N∑
j=1

(xj − x̃j)2

N
(8.1)

where xj is the value of the jth voxel of the evaluated image, x̃j is the correspon-
ding value of the reference image and N is the total number of voxels.

The similarity metric RMSE was computed in a block-based fashion. We divi-
ded the reconstructed images into small blocks, each being a 16×16×12 voxels
neighborhood surrounding the center of each sphere. A similar sampling ap-
proach was applied to the Tuy value map. Therefore the final results were two
arrays: one stored a metric value quantifying possible artifacts, and one stored
the block-averaged Tuy value. Comparative analysis was then performed to
reveal the relationship between the local Tuy value and the severity measure
of the possible artifacts, in both artifact-free regions and regions affected by
artifacts.

8.2.7 An interior-like problem simulation

Last, we examined a case where the Tuy map does not predict data-insufficiency
in a particular region. In the 2D interior problem, all projections are truncated
transaxially on both sides. For the pixels inside the interior region all projection
lines are still available, whereas for the surrounding pixels, some lines are lost
due to the truncation. The local Tuy values will be zero inside the interior
region and greater than zero in the surrounding region, so the local Tuy’s
condition implies data-sufficiency for the interior region. However, for interior
projection data, it is known that the solution is not unique inside the interior
region. The reconstructed image may suffer from a DC-shift and low frequency
artifacts in the interior region (Natterer 2001).

To examine the effectiveness of the proposed Tuy map on a 3D version of the
interior problem, we studied the following interior-like problem. The interior
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region can be created by reducing the fanangle. On the other hand, a specially-
designed rigid motion can also induce such an interior region, if the outer parts
of the object occasionally move out of the FOV during the helical scan. The
motion was designed such that the local Tuy’s condition was satisfied within the
ROI, but not in the volume surrounding that ROI. The created missing data
problem has some similarity to that of the classical 2D interior problem. We
then checked how the reconstruction of the interior region was affected by the
incomplete sampling in the surrounding structures. The hypothesis was that in
this situation, the interior region of the object cannot be exactly reconstructed,
although the local Tuy values are very low. Note that here the simulation is
not a straightforward extension of the 2D interior problem to 3D, because in
our 3D problem, the low Tuy value volume is only surrounded transaxially by
high Tuy values, not axially.

8.3 Simulations and phantom study

The goal was to verify the effectiveness of the proposed Tuy map in various
situations. A total of five studies were performed to verify the predictions of
data-insufficiency in the context of helical CT: (1) a static simulation with com-
plete sampling – the object was static during the scan and the FOV was large
enough to cover the object in all directions; (2) a simulation with moderate
object motion – the object was undergoing moderate motion during the scan
while the FOV remained the same as in the first simulation; (3) three simu-
lations, two using the multi-sphere phantom, and one with the voxelized head
phantom, with severe object motion, which was likely to create incomplete me-
asurements; (4) a moving phantom scan — an actual helical CT-scan with a
moving phantom; (5) Two simulations concerning an interior-like problem. In
each study, the reconstructions were compared to the Tuy maps to study the
relation between the occurrence of artifacts and the local Tuy values.

8.3.1 Simulation with static object

A helical scan of the stationary multi-sphere phantom was simulated as descri-
bed in Section 8.2.3. The parameters are listed as Configuration 1 in Table 8.1.
The FOV covered the whole object in the transaxial plane. The hypothesis
was that this experiment would produce a Tuy map which was (almost) zero
everywhere and an artifact-free reconstruction, indicating that the sampling
was complete everywhere.

8.3.2 Simulation with moderate object motion

A segment (Fig. 8.7) of the motion data from a volunteer was applied to the
multi-sphere phantom during a helical scan simulation, as described in Section
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8.2.3. The scan parameters are listed as Configuration 1 in Table 8.1. As shown
in Fig. 8.7, this was a moderate motion with translations up to 8 mm and
rotations up to 7◦. Since the motion-corrected reconstruction did not produce
any artifacts, the Tuy map was expected to be (almost) zero everywhere.

8.3.3 Three Simulations with severe object motion

Two multi-sphere phantom simulations

Similar simulation experiments were performed with the same multi-sphere
phantom, but this time with the more severe volunteer motions shown in Fig.
8.8 and Fig. 8.9. The hypothesis was that for these motions, the Tuy map would
have some non-zero values due to data-insufficiency, and the reconstruction
with motion correction would produce images with artifacts in those regions.
The scan parameters are listed as Configuration 1 in Table 8.1.

Simulation with the voxelized head phantom

In order to further investigate the correlation between the Tuy map and the
artifacts in an image more similar to those encountered in clinical practice,
we applied the motion of Fig. 8.8 also to the voxelized head phantom (Fig.
8.6). Visual assessment was performed to verify the match between the Tuy
map and the motion-corrected reconstruction image. Again, we expected that
severe artifacts would only occur in regions with high Tuy values.

(a) (b)

Figure 8.7: A moderate rigid motion segment recorded from subject #1. Left:
rotations. Right: translations. All the motion recorded from volunteers can be
found in the supplementary data of Kim et al. (2015b).
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(a) (b)

Figure 8.8: A severe rigid motion segment from subject #2. Left: rotations.
Right: translations.

(a) (b)

Figure 8.9: A severe rigid motion segment from subject #3. Left: rotations.
Right: translations.

(a) (b)

Figure 8.10: The rolling motion recorded in the phantom scan. Left: rotations.
Right: translations.
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8.3.4 A moving phantom scan

A 3D Hoffman brain phantom filled with air was used. The scanning parameters
are listed as Configuration 2 in Table 8.1. The motion recording setup is
described in Section 8.2.4. The rolling motion (Fig. 8.10), had up to 120◦

in-plane rotation, 120 mm in-plane translation and 10◦ out-of-plane rotation,
10 mm out-of-plane translation. To assess the data-insufficiency, the Tuy map
was computed and compared to motion-corrected images.

8.3.5 Two simulations concerning an interior-like problem

The scan parameters used in this simulation are listed as Configuration 3 in
Table 8.1. Unlike the previous simulations, a Siemens Sensation 16 CT scanner
was simulated. The Sensation 16 has a narrower z-coverage than the Definition
AS which we chose for the other simulations. We assumed that the creation of
the interior region problem would be easier for a narrow detector, since axial
truncation is needed to create the outer region with high Tuy values.

Data truncation from reduced fan-beam angle

Simulations were performed with transaxial truncation. For the simulated scan-
ner, the fanangle was reduced from 52.1◦ to 13.7◦. By doing this, an interior-like
problem (similar to 2D interior problem) was created as described in Section
8.2.7. We still used the multi-sphere phantom shown in Fig. 8.5.

OSEM was performed for 50 iterations and 20 subsets to guarantee good con-
vergence of the reconstruction. The Tuy map was computed and confirmed the
creation of a 3D interior low Tuy value region, surrounded by higher Tuy va-
lues. As discussed in Section 8.2.7, our hypothesis was that the reconstructions
would suffer from a DC-shift and/or low frequency artifacts inside the interior
region, where the sampling was complete according to the Tuy map.

Data truncation from rigid motion

As indicated in Section 8.2.7, we designed a rigid motion to create a pattern
of truncation in the projections that would be similar to the situation of the
2D interior problem. For each CT projection view, the object was rotated
by a constant angle of 7.5◦ about an axis located inside the transaxial plane
and perpendicular to both the rotation axis of the scanner, and to the line
connecting the source and the center of the detector array (Fig. 8.11). With
such motion, there was always part of the outer object moving out of the FOV
during the scan. The motion was large enough to create a pattern of motion-
induced data truncation that swept over the exterior region, as the source-
detector pair moved in a spiral fashion. The motion was contrived to ensure all
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(a) (b)

Figure 8.11: The red region indicates the intersection with the FOV for the
current view without (a) and with (b) rotation of the object - the green region
has been moved out of the FOV (axial truncation) by the rotation.

outer parts of the object would be outside the FOV for some projection views,
while the inner parts of the object always stayed within the FOV.

The motion was applied to the multi-sphere phantom (Fig. 8.5) in a simulated
helical scan. The simulation and reconstruction setup were identical to the one
in last subsection. The Tuy map was computed to confirm the creation of a
3D interior low Tuy value region, surrounded by higher Tuy values.

8.4 Results

The results are presented in the same order as in the previous section.

8.4.1 Simulation with static object

Three orthogonal planes through the 3D reconstructed images of the static
multi-sphere phantom are shown in Fig. 8.12(a). These images, when com-
pared to those of Fig. 8.5, suggest that the reconstruction was artifact-free
everywhere, as anticipated. The same three planes through the 3D Tuy map
are shown in Fig. 8.12(b), revealing that all the calculated local Tuy values
were between 0 and 0.01, which we consider to be effectively zero. The small
non-zero values of the Tuy map are due to the discretizations described in
Section 8.2.1. In summary, the local Tuy values were close to zero, and the
reconstruction image showed no visible artifacts. These two observations are
compatible with each other and with the fact that no data-insufficiency was
anticipated for this simulation study.
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8.4.2 Simulation with moderate object motion

Three orthogonal planes through the 3D reconstructed images of multi-sphere
phantom undergoing moderate motion are shown in Fig. 8.13(a). Again, these
images, when compared to those of Fig. 8.5, suggest that the reconstruction
was artifact-free everywhere, as anticipated. The same three planes through the
3D Tuy map are shown in Fig. 8.13(b), revealing that all the calculated local
Tuy values were between 0 and 0.02, which we consider to be effectively zero.
In summary, the local Tuy values were close to zero, and the reconstruction
image showed no visible artifacts. Hence there was no data-insufficiency in this
simulation study, as anticipated.

(a)

(b)

Figure 8.12: Transaxial, coronal and sagittal planes through the MLEM recon-
struction from (a) a motion-free CT-scan and (b) the corresponding Tuy map.
The red dashed square refers to Fig. 8.15.

8.4.3 Three simulations with severe object motion

Two multi-sphere phantom simulations

Orthogonal planes of the reconstructions with motion correction and the Tuy
maps are shown in Fig. 8.14. Reconstruction artifacts were observed for the
two sets of severe rigid motions, suggesting that the severe motions did create
data-insufficiency. To facilitate comparison of the images an overlay of the Tuy
values on the reconstructed image planes is added. The figure shows the planes
with the highest Tuy values, and reveals good spatial matching between the
occurrence of reconstruction artifacts and increased Tuy values.

As described in Section 8.2.6, we performed a quantitative analysis for the

111



Chapter 8. Estimation of data-insufficiency

(a)

(b)

Figure 8.13: Three orthogonal planes of a motion-corrected MLEM recon-
struction from (a) a CT-scan with moderate motion with the motion from
Fig. 8.7; (b) the corresponding Tuy map.

results from the motion in Fig. 8.9. Fig. 8.15 reveals a strong positive correla-
tion between the severity of the artifacts and the average Tuy value for selected
sampled blocks within the phantom space. From these studies, we observe that
the local Tuy value was a good predictor of local artifact severity, at least for
the multi-sphere phantom.

Simulation with the voxelized head phantom

Fig. 8.16 shows the motion-corrected reconstructed images of the digital head
phantom which had undergone severe motion (Fig. 8.8) during the scan. We
observe that high local Tuy values occur at regions where artifacts appear (red
arrows in Fig. 8.16), but there are other regions of high Tuy values that ap-
pear artifact-free (blue arrows in Fig. 8.16). Fig. 8.17 shows that although the
artifacts in SART are different from those of MLEM, the artifacts occur in the
high Tuy value regions for both algorithms. The Tuy map is designed to me-
asure data-insufficiency, but data-insufficiency does not always create artifacts
in the reconstruction. The multi-sphere phantom has fine details with edges
in all directions, making it very likely that data-insufficiency will indeed create
artifacts, which was confirmed by the experiments (Fig. 8.14 and Fig. 8.15).
However, typical clinical images often have large fairly uniform regions, which
are less challenging for most reconstruction algorithms. In agreement with ob-
servations in (Natterer 2001), artifacts showed up “mainly in the vicinity of
lines which are tangent to curves of discontinuity of the object and for which
the value in the projections are missing”. We verified that distortions were
mostly seen where the missing projection lines were nearly tangent to some of
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(a)

(b)

Figure 8.14: Result of simulations with severe motion of the object, (a) top:
Tuy map for the scan with motion from Fig. 8.8; middle: MLEM reconstruction
image in the same position; bottom: the image overlayed with the Tuy map. (b)
top: Tuy map for the scan with motion from Fig. 8.9; middle: reconstruction
image; bottom: image overlayed with the Tuy map. Red indicates high Tuy
values and therefore poor tomographic sampling in a particular voxel. The
green (artifact-free) and blue (with artifacts) dashed squares refer to Fig. 8.15.

113



Chapter 8. Estimation of data-insufficiency

Figure 8.15: The scatter plot shows the relationship between RMSE (recon-
structions versus true phantom) and sampled Tuy value in certain regions. Blue
points correspond to samples in the blue regions in Fig. 8.14, and green points
to those in the green regions. As a reference, red points corresponding to blocks
in the red region in Fig. 8.12 (motion-free scan) are included as well.

(a)

(b)

Figure 8.16: Result of the simulation using the head phantom and the motion
of Fig. 8.8: (a) the MLEM reconstruction after motion correction; (b) the
overlay between the Tuy map (Fig. 8.14a) and the image in (a). Red arrows
indicate the distorted regions, blue arrow indicates a region which is artifact-
free, although the corresponding Tuy values are relatively high. The Tuy values
are all greater than 0.4 at the locations indicated by the arrows. The intensity
range of the Tuy map is [0, 0.8].
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Figure 8.17: Top: The SART reconstruction (same planes as in Fig. 8.16).
Middle: the difference between the MLEM (Fig. ??a and SART reconstructi-
ons. Bottom: the difference image with the Tuy map in overlay.

the discontinuities (a separate study was done but not shown in this simula-
tion). The discontinuities that were perpendicular to the missing lines suffered
less from artifacts. Consequently, the Tuy map indicates where artifacts may
occur, but whether they occur or not depends on the object features.

8.4.4 A moving phantom scan

Three orthogonal planes of the motion-corrected images are shown in the middle
row of the Fig. 8.18. Different from previous studies, it is based on a real CT-
scan of a 3D Hoffman phantom. The artifacts are clearly visible in all three
views. The same three views through the 3D Tuy map are shown in the top row
of the Fig. 8.18. The regions with high Tuy-values indicate the potential risk
of artifacts in those regions. The overlayed image (bottom, Fig. 8.18) indicates
that the Tuy map successfully identified the regions where data-insufficiency
caused artifacts in the motion-corrected reconstruction images (red arrows).
But similar to last subsection, we observed that some regions of high Tuy values
appear artifact-free (blue arrows). However, this does not contradict the notion
that the Tuy map successfully identified the regions where data-insufficiency
might induce artifacts.
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Figure 8.18: Result of the phantom scan. Middle: the MLEM reconstruction
image (cropped to display the phantom) after motion correction using the mea-
sured motion; Top: the corresponding Tuy map; Bottom: the overlayed image.
Red arrows indicate the distorted regions, blue arrow indicates a region which
is artifact-free, although the corresponding Tuy values are relatively high. At
all regions indicated by arrows, the Tuy values are over 0.5.
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8.4.5 Two simulations concerning an interior-like problem

Transaxial data truncation from reduced fan-beam angle

Fig. 8.19(a) shows the Tuy map for the interior-like problem created by re-
ducing the fanangle. Near the center of the object, the truncation produced
a central low Tuy value region transaxially, surrounded by high Tuy values.
The high Tuy values indicate incomplete sampling due to the transaxial trun-
cation.

As explained in Section 8.2.7, it was expected that multiple solutions exist
inside the interior region, even though the sampling was complete there. A
first reconstruction was performed, starting from a uniform image. The recon-
struction converged to an under-estimated solution in the interior region (Fig.
8.20(a)-left). To check the uniqueness of this solution, we started another re-
construction from a different image, which was a reference image reconstructed
from motion-free projections of the multi-sphere phantom. The reconstruction
starting from the reference image converged to a solution (Fig. 8.20(a)-right)
very close to that starting reference image. A third reconstruction was initia-
lized with a linear combination of the two solutions. The reconstructed image
(not shown here) was different from the previous two solutions and remained
essentially unchanged after several iterations, confirming that the problem has
multiple solutions. Consequently, the reconstruction problem does not have
a unique solution in the interior region of low Tuy values. Therefore, in this
interior-like problem one cannot conclude that a local low Tuy value region
always indicates that that region can be reconstructed exactly.

Data truncation from rigid motion

The simulations in last subsection were repeated in the presence of the designed
motion. Fig. 8.19(b) confirms that an interior region was created: the motion-
induced sampling incompleteness yielded high Tuy values, surrounding a region
where the local Tuy value was low. Very similar results were found for all
reconstructions (Fig. 8.20(b)), compared to ones from last subsection.

8.5 Discussion

Our results have verified that in the context of rigid motion-corrected helical
CT, a region of high Tuy values indicates a likelihood of artifacts there, due to
data-insufficiency in agreement with and slightly generalizing the main result
of (Finch 1985). With the Tuy map, one can distinguish the artifacts due to
data-insufficiency from other types of artifacts, e.g. from beam hardening or
motion blurring that could be corrected by using a reconstruction based on a
more accurate forward model.
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(a)

(b)

Figure 8.19: From left to right: coronal, sagittal and transaxial views of the
Tuy map, with the contour (white) of the object in overlay, (a) for the interior-
like problem produced by reducing the fanangle, (b) for the problem created
by the view-dependent rigid object motion.

The Tuy map provides a general approach to assess data-insufficiency, po-
tentially useful for many tomographic geometries like helical CT, cone-beam
CT with non-standard trajectories or SPECT with non-standard collimators
and/or trajectories, regardless of motion. The algorithm described in Section
8.2.1 can easily be modified for a specific geometry. One issue is that finding
the complete set of measured projection lines (step 1 in Fig. 8.1) can be time
consuming. Depending on the scan features, this step can be further optimized.
For common trajectories, e.g. circle and helix, it would be possible to compute
the optimal projection line analytically without searching through all available
projection lines. For other trajectories, it is still very likely that the optimal
projection line will occur in a short and predictable segment of the trajectory,
which reduces the search space. For one particular voxel, searching can start
from the index of an optimal projection line of a neighbouring voxel that is
already computed, which could reduce the computational burden significantly.
In this paper we applied this modification to the program in all the simulations
where no motion was present.

As shown in Fig. 8.12, 8.13 and 8.15, and contrary to theory, Tuy values were
larger than zero in the static simulation. This is due to the discretizations
described in Section 8.2.1. Based on the multi-sphere phantom simulation, we
consider that if the Tuy value is larger than a threshold (0.02, see Fig. 8.15)
in a local region, some data-insufficiency exists and it can create artifacts in
that region. The severity of the potential artifacts is roughly proportional to
the local Tuy value.
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(a)

(b)

Figure 8.20: Coronal views (central-slice position) of reconstruction images af-
ter 1000 updates from (a) reducing the fanangle and (b) synthetic rigid motion.
The red arrow indicates the DC-shift in the interior region. The blue lines refer
to Fig. 8.21.

Figure 8.21: Profiles along the blue lines in Fig. 8.20: the maximum difference
between Fig. 8.20(a)-left and Fig. 8.20(a)-right is 20.6 % of the maximum
intensity; the maximum difference between Fig. 8.20(b)-left and Fig. 8.20(b)-
right is 24.9 %.
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In all the simulations there was a small intentional geometric mismatch between
the geometry of the simulated data and the geometries used for calculating the
Tuy map and for forward and backward projections in the reconstructions.
The purpose of this mismatch was to avoid unrealistically “perfect” data, so-
metimes called “the inverse crime”. Otherwise the simulation was ideal: noise,
scatter and beam hardening were not simulated, because we wanted to focus on
data-insufficiency, avoiding other confounding sources of artifacts. An expecta-
tion maximization reconstruction was chosen as the reconstruction algorithm
(MLEM), but the Tuy map is independent of the reconstruction method. For
regions where the data are insufficient, any reconstruction algorithm may pro-
duce a wrong solution (unless it would make use of additional prior knowledge,
but this is not considered in this paper). We also tested all the simulations
with another iterative reconstruction algorithm, i.e. SART (Fig. 8.17). All
results were similar to those in Section 8.4.

The incompleteness in helical CT was caused by two main effects: the effective
trajectory and truncation. The effective trajectory could be incomplete even for
an ideal cone-beam tomograph, where all projections would be untruncated.
For example, if the object moved in the direction of the scanner axis with
the same speed as the bed but in the opposite direction, then the effective
trajectory would become circular, which is known to be incomplete except for
the central slice. The limited axial coverage of the clinical CT system produces
additional data loss, which could create data-insufficiency for an otherwise
complete effective trajectory. For example, in the rolling phantom study, careful
examination of the motion showed that the complex behaviour of the effective
trajectory in the axial direction, combined with axial truncation, generated
the data-insufficiency. Fortunately, the Tuy value approach verifies any data-
insufficiency, independent of its causes.

A high Tuy value in the Tuy map indicates data-insufficiency, however, the
interpretation of a zero Tuy value is less obvious. Specifically, in the situa-
tion where the scan produces regions with increased Tuy values, we cannot
conclude that exact reconstruction is possible in the region of low Tuy values.
In particular, for our example of the interior-like problem, we observed that
the reconstruction problem does not have a unique solution inside the interior
region, although the image quality inside is typically acceptable. However, if
the Tuy value is close to zero everywhere, then it is believed that the data are
sufficient for exact reconstruction everywhere. This notion is generally accep-
ted although not mathematically proven (Clackdoyle 2005) except in the 2D
case.

We have observed that data-insufficiency only appears to produce artifacts if
the object being scanned has specific structural features at that point, in par-
ticular discontinuities that are parallel to missing projection lines. In contrast,
no obvious artifacts were found in high Tuy value regions where the missing
projection lines were perpendicular to surfaces of discontinuities. However,
this does not contradict the notion that the Tuy map provides a useful warning
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whenever artifacts could be present because of incomplete sampling.

The proposed Tuy value computation (Fig. 8.1) is similar to that of Metzler
et al. (2003a,b) and Liu et al. (2012), but with some differences in the details.
In (Metzler et al. 2003a), voxels were identified as either belonging or not to
the fully sampled region, without identifying the degree of insufficiency. In
(Metzler et al. 2003b) and (Liu et al. 2012) the degree of insufficiency was
quantified as the fraction of projection lines that are missing, whereas in this
work, the insufficiency was quantified as the largest angle of missing lines. We
have assumed that one set of missing projections covering a large angle is worse
than many sets associated with small angles. The validity of this assumption
remains to be investigated.

8.6 Conclusion

We have introduced a data-insufficiency measure that we call the Tuy map,
the purpose of which is to quantify on a scale of zero to one, the degree of
data-insufficiency at each point in the reconstructed image. Zero indicates no
insufficiency, and one indicates severe insufficiency and is a signal that arti-
facts are likely to appear in that location. The Tuy map is calculated directly
from the geometry of the acquisition: from the effective trajectory (the in-
verse rigid motion applied to the physical trajectory) and the truncations of
the projections. The local Tuy values are independent of the object scanned,
and are independent of the choice of the algorithm subsequently used for image
reconstruction. Whether or not artifacts appear where high Tuy values occur
depends on the object being imaged and not on the reconstruction algorithm
(unless the algorithm is using other prior information). Low Tuy values do not
guarantee accurate artifact-free reconstructions because a 3D effect similar to
the 2D interior problem can occur.

Our studies which corroborated the above findings were all performed in the
context of rigid motion-corrected helical CT scanning, but we believe that the
principles are general and can be applied to other scan situations and other
modalities where, at least to first order, the imaging model involves truncated
or untrucated cone-beam projections.
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Chapter 9

General Conclusion and Fu-
ture work

9.1 Summary and Conclusion

In this thesis, we have investigated several issues related to rigid motion cor-
rection in computed tomography (CT) imaging. The thesis was divided into
four parts. Specifically, in part I (Chapter 1-4), we introduced the background
of the X-ray CT imaging and reviewed several existing motion correction met-
hods in CT imaging. In part II (Chapter 5), we listed several objectives to
be achieved in this thesis. In part III (Chapter 6-8), we demonstrated the
proposed solutions to address above objectives, which corresponds to three
publications.

� Chapter 1 - We briefly reviewed the development of the X-ray CT scan-
ners. CT imaging provides an unprecedented capability in visualizing the
human anatomy. Since the invention of the first CT system, four gene-
rations of CT system have been developed. Today two most commonly
used scanner models are clinical multi-row CT and cone-beam CT, both
are based on the third generation design.

� Chapter 2 - We reviewed several physical processes that affect the acqui-
sition of CT data, including X-ray photons generation, X-ray photons
interaction with matter and X-ray photons detection. X-ray photons are
produced inside a tube and distributed in a certain energy range. Emitted
X-ray photons travel towards and interact with the patient body, where
multiple interaction processes happen. As a result, the number of pho-
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tons detected after propagation through the body is often much smaller
than the number of photons emitted from the tube. Nowadays most of
the state-of-art clinical CT systems uses energy integrating detectors to
measure the photons.

� Chapter 3 - We first reviewed the concepts related to CT reconstruction,
including projection, backprojection and data-sufficiency. Then two cate-
gories of reconstruction algorithms, analytical reconstruction algorithms
and iterative reconstruction algorithms were introduced. Many analy-
tical reconstruction algorithms are based on the Fourier slice theorem,
which describes a relationship between the scanned object and measured
data. An analytical algorithm obtains the solution by applying analy-
tical inversion of the Radon transform in a one-step calculation. An
iterative algorithm obtains the solution which minimizes a measure of
data-inconsistency between the measured data and computed projecti-
ons in a feedback loop (Fig. 3.11). Forward and backward projection
operations are repeated within this iterative process. An iterative algo-
rithm is considered to have several advantages over an analytical one,
but often requires considerable computation power especially when re-
constructing the image from a real scan. Because of that, we reviewed
several reconstruction acceleration techniques at the end of this chapter.

� Chapter 4 - We first briefly discussed the frequent occurrence of motion
artifacts, then several existing motion correction methods in CT imaging
were introduced. We categorized the existing motion correction methods
in two groups. Methods in the first group require motion information,
and consist of motion acquisition and motion compensation processes.
Motion acquisition derives the motion from reference images, surrogate
signals or from the data themselves. Motion compensation reduces the
artifacts during a reconstruction process, which either using an analytical
algorithm or an iterative algorithm. Methods in the second group correct
the motion artifacts without the explicit knowledge of the motion, and
we call them image-processing based methods.

� Chapter 5 - We listed three objectives to be achieved in this thesis, inclu-
ding: (1) to propose a new approach to mitigate the motion artifacts in
helical scans of the head; (2) to extend that artifacts reduction approach
to dental cone-beam CT imaging; (3) to identify the degree of incomple-
teness of the measurement at voxel level in rigid motion-corrected scans.

� Chapter 6 - We proposed a rigid motion correction approach for heli-
cal head CT scans. It only requires the knowledge of the measured raw
data. We categorized it into joint estimation and compensation methods
described in Chapter 4. The proposed approach iteratively updates the
motion and the image. In each iteration rigid motion is estimated view-
by-view and then used to update the system matrix, which is used in a
motion-compensated reconstruction. A multi-resolution scheme is used
to accelerate these alternate updates. A fine-resolution reconstruction is
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obtained with the last motion estimate. Several techniques are applied
to accelerate this final reconstruction, which produces an image with di-
agnostic quality. Proposed approach was evaluated in various studies, in-
cluding simulations, patient studies and a phantom study. Qualitatively,
as assessed by an experienced radiologist, image quality was improved
after compensation in all studies; quantitatively, root-mean-square-error
(RMSE) was reduced and mean structural similarity (MSSIM) was incre-
ased in both simulations and a phantom study, where the ground truth
was available.

� Chapter 7 - We proposed a rigid motion correction approach for dental
cone-beam CT scans. It is based the approach described in Chapter 6.
A dental CT-scan differs from a helical CT-scan in several aspects, one
of the which is the usage of the smaller transaxial field-of-view (FOV)
to avoid the unnecessary radiation dose. To account for the differences,
we modified the approach in Chapter 6 by introducing a patch-based
reconstruction algorithm to the image update. The proposed approach
was first evaluated in simulation studies, and it was found both improving
the motion estimation accuracy and accelerating the motion correction.
Most of the artifacts in the reconstructed images were eliminated after
correction. In addition, promising results were obtained in a phantom
study. However, in dental cone-beam CT, motion is sometimes not rigid
but non-rigid. We expect the approach would fail for a scan where non-
rigid motion is present.

� Chapter 8 - We proposed an approach to quantify the data-insufficiency
for reconstructing the image from a given scan. Severe rigid motion could
induce incomplete sampling in certain regions of a reconstructed image.
The reason is that when performing the reconstruction, rigid motion cor-
rection effectively moves the locations of source. This creates an effective
source trajectory with respect to the patient, which may differ signifi-
cantly from the intended one. Combined with axial or even transaxial
detector truncation, the distorted trajectory can cause incomplete sam-
pling in the measured data. If measured data are insufficient, then accu-
rate and stable reconstruction from the data is not possible. We proposed
a measure called Tuy map, which quantifies voxel-level insufficiency. A
high value indicates a significant local data-insufficiency, which is a sig-
nal that artifacts are likely to happen at that location. The proposed
approach was evaluated in several simulations and a phantom study. In
all cases, the Tuy map indicated all regions in the reconstructed images
which suffered from data-insufficiency and where artifacts were likely to
occur. We also demonstrated a case where exact local reconstruction was
not assured although no local data-insufficiency was detected. We believe
that the proposed approach can be applied to many tomographic geome-
tries, e.g. helical CT, cone-beam CT with non-standard geometries or
SPECT with non-standard collimators and/or trajectories, regardless of
motion.
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9.2 Future work

Further evaluation of proposed rigid motion correction method
on clinical CT scans

In Chapter 6, we evaluated the proposed motion correction approach on four
helical head CT scans. By the time this thesis was finished, we had tested 56
more scans and all images had been reviewed by two radiologists. These include
25 acquired on a Siemens Force scanner in the Westmead Hospital in Sydney,
21 on a Siemens Sensation 64 scanner and 8 on a Siemens Force scanner in the
Sydney Children’s Hospital. The aim of this evaluation is to prove that the
approach is robust with different scan setups and with patients having various
ages and diseases. Additionally, we are interested in answering the following
questions: (1) will a radiologist prefer the corrected image over non-corrected
ones, for both bone and soft-tissue images? (2) while the approach works
well on motion-contaminated scans, how is the effect on the motion-free ones?
(3) what are the potential applications (among trauma, bleeding and fracture
detections, etc.) that benefits the most from motion correction? Since we are
still analysing the results, no answers regarding above questions are reported
in this thesis.

Acceleration of proposed rigid motion correction method

As reported in Chapter 6, the average time to perform motion correction on a
normal head scan is about 14 hours. Of this time, 2 hours are for the motion
estimation, 12 hours are for the final reconstruction (on a GPU). Clearly the
bottleneck is the final iterative reconstruction. We have tested the running time
of final reconstruction on different hardware platforms with parallel computing
(using OpenCL):

Table 9.1: Running time of the final reconstruction on different hardwares.

Hardware
structure

NIVIDIA
C2075

NIVIDIA
K40

NIVIDIA
V100

Intel Xeon
E5-2699 v4

Running
time (hours)

12 6 1 5.5

Aside from using advanced hardware, further acceleration of the final recon-
struction can be achieved in three ways:

(1) Improve the convergence rate of the reconstruction algorithm itself, by
applying advanced optimization techniques.

(2) Optimize the implementation of the algorithm on specific hardware struc-
ture, such as implementing the whole iterative algorithm on a GPU.
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(3) Replace the iterative reconstruction with an Iterative FBP reconstruction
(Fig. 3.11b). This demands the correct handling of the ramp-filtering and
weightings in the analytical reconstruction when performing the rigid motion
compensation. Above handling is less demanding when the motion to be com-
pensated is small. In such cases the approximate analytical reconstruction
probably would still provide acceptable reconstructed image quality. The ar-
tifacts are expected to be suppressed with only one or few iterations of FBP.
However, when motion to be compensated is large, induced artifacts often can-
not be eliminated in an iterative scheme. In such case, the motion must be
accounted for the ramp-filtering and/or the backprojection weightings. Imple-
menting such an approach would hopefully allow the usage of Iterative FBP
for compensating severe motion.

Not only for final reconstruction, acceleration of the motion estimation is also
possible by introducing an adaptive estimation strategy. This is based on the
fact that the motion amplitude may vary across time, i.e. pose change might
be large in certain views but little in other views. One can invent an estimation
scheme that does more computation on motion-affected views, but less on other
views. This requires an initial identification of the views possibly affected
by motion before the actual estimation. For example, similarity metrics (e.g.
MSSIM) can be measured for all adjacent views, which will probably produce
a profile that can be used to identify views that are likely to be affected by
motion. When performing the estimation, early iterations will only focus on the
possible motion-affected views, while later iterations perform the estimation in
all views just like in Chapter 6.

Motion correction for non-rigid motion

While the proposed approach is designed for rigid motion correction, it would be
interesting to investigate how to extend it to non-rigid motion correction. Like
for rigid motion, we assume the deformation fields may be different across views
in a CT-scan affected by non-rigid motion because of the high sampling rate.
Hence for non-rigid motion, we have much more parameters to be estimated
in each view, compared with the previous six rigid parameters. Like for rigid
motion, we can calculate the derivative of the projection intensity with respect
to each non-rigid parameter. From those derivatives we are able to obtain
a first estimate of the motion fields across views. Then we can perform the
motion compensation with this initial motion estimate, and repeat the motion
estimation and compensation for several iterations until convergence. During
this process, both spatial and temporal constraints can be introduced to motion
fields, as non-rigid motion in human body are often smooth in nature.

However, the difficulty of the non-rigid motion estimation is that not all pa-
rameters are equally sensitive to the projection intensity changes. One can
imagine that high-intensity structures (e.g. ribs) contribute to the measure-
ment much more than low-intensity ones (lung tumors) do. As a result, our
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projection-based approach would accurately estimate the local motion of the
high intensity structures, but not that of low-contrast regions. For example in a
motion-contaminated thoracic CT-scan, the proposed approach would probably
fail to estimate the movement of the lung tumor. One solution is to identify the
high intensity structures surrounding the lung tumor as virtual markers (Rene
2010), but this might be difficult in real implementation. Another solution is
to perform the motion estimation with the help of a 4D prior motion model
(Zhang et al. 2017). Such a model provides an initial estimate of the motion
fields in all projection views, which could help the motion estimation process
significantly.

Extending the rigid motion correction method to online cone-
beam CT calibration

For cone-beam CT, there is a connection between the rigid motion correction
and online calibration - the rigid movement of an object is equivalent to (vir-
tual) inverse movement of the source-detector pair. Based on this, the proposed
motion correction approach can be extended to perform simultaneous calibra-
tion and reconstruction for a cone-beam CT-scan. Since often the unintended
movement of the cone-beam CT source/detector is small (often jittering), para-
meter estimation should not take too many iterations. One potential problem
is the estimation of the relative movement between the source and the detec-
tor. This requires the estimation of three additional parameters on top of the
original six in each projection view. It is unclear if introducing these three
parameters would adversely affect the identifiability of the other motion para-
meters. On the other hand, it is often safe to ignore estimating some of the nine
parameters, as they were found to have little effect on image quality (Kingston
et al. 2011; Muders et al. 2014).

Further evaluation of proposed rigid motion correction method
on dental imaging

In Chapter 7, we applied the motion correction to the simulated scans and
a phantom scan that were affected by small rigid motion. Although good
initial results were observed, several concerns exist before further applying the
proposed approach on real dental scans:

(1) The proposed approach would probably fail to eliminate the artifacts caused
by non-rigid motion. This is unfortunate, as many dental CT scans are affected
by such kind of motion (tongue movement, swallowing, etc., (Spin-Neto et al.
2016)).

(2) Size of the scan FOV might affect the motion estimation accuracy. It is
expected that the smaller the FOV is, the less accurate the image estimate will
be, as in theory complete FOV reconstruction should be available to compute
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new projections. Induced errors could propagate into motion compensation,
although little effects were observed in our preliminary studies where the motion
was small.

(3) For cone-beam CT, the proposed approach assumes that the object position
in each projection view cannot deviate much from the average position of the
object in an initial reconstruction. The reason is that the 2D/3D registration
(in motion estimation) tries to align each measured projection to the initial vo-
lume in the first iteration. If during such alignment, a motion-free projection
is registered to a severely distorted volume, false-positive movement might be
estimated for that projection. Based on our (limited) experience, it is therefore
beneficial to limit the motion estimation to those views which are most likely
to be affected by motion (like the phantom study in Section 7.4) to prevent the
assignment of this unwanted non-zero motion estimate to motion-free views.
This is less problematic for a helical CT-scan, where an axial-truncated pro-
jection only correlates to a part of the object, hence the motion estimation
mostly relies on the local object and is less sensitive to the whole distorted
object.

Tuy map assisted reconstruction

When a reconstructed CT image suffers from artifacts due to data-insufficiency
(caused by truncation and/or motion), a second reconstruction may be needed
to obtain an artifact-free image:

(1) When a non-truncated prior scan is available, one can perform a prior-
constrainted reconstruction for the current truncated scan. The Tuy map from
the truncated scan could help this second reconstruction by providing the infor-
mation about which parts of measurement are required but missing. An exam-
ple is an application on scans from a dual-source scanner (e.g. Siemens Force),
of which the high-energy scan is with full FOV but the low-energy scan is with
limited FOV. To reconstruct a full FOV low-energy scan, one can use the high-
energy CT image as prior information via techniques like PICCS (Chen et al.
2008) or DPIRPLE (Dang et al. 2014; Pourmorteza et al. 2016). The Tuy map
from the low-energy scan could provide information about the degree to which
each voxel suffers from data-insufficiency. One can incorporate such informa-
tion into the reconstruction by implementing a position-dependent prior weight
- high weights are chosen for those voxels with high data-insufficiency.

(2) When no prior scan is available, a repeat scan may be needed. For instance,
assume we have a helical scan with artifacts due to data-insufficiency caused by
severe rigid motion. Again the Tuy map can provide information about which
voxels do not have enough data for reconstruction. Hence the repeat scan can
be limited to a limited axial range, and the final image can be reconstructed
from both two scans. This could shorten the overall scan time and avoid the
unnecessary dose to the patients in the repeat scan.
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Beaupré, and A. Maier (2013). “Fiducial marker-based correction for in-
voluntary motion in weight-bearing C-arm CT scanning of knees. Part I.
Numerical model-based optimization.” In: Med. Phys. 40.9, p. 091905. doi:
10.1118/1.4817476.

Choi, J.-H., A. Maier, A. Keil, S. Pal, E. J. McWalter, G. S. Beaupré, G. E.
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