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Purpose: Although current computed tomography (CT) systems can scan the head in a very short

time, patient motion sometimes still induces artifacts. If motion occurs, one has to repeat the scan; to

avoid motion, sedation or anesthesia is sometimes applied.

Methods: The authors propose a method to iteratively estimate and compensate this motion during

the reconstruction. In every iteration, the rigid motion was estimated view-by-view and then used

to update the system matrix. A multiresolution scheme was used to speed up the convergence of

this joint estimation of the image and the motion of the subject. A final iterative reconstruction was

performed with the last motion estimate.

Results: The method was evaluated on simulations, patient scans, and a phantom study. The quality

of the reconstructed images was improved substantially after the compensation. In simulation and

phantom studies, root-mean-square error was reduced and mean structural similarity was increased.

In the patient studies, most of the motion blurring in the reconstructed images disappeared after the

compensation.

Conclusions: The proposed method effectively eliminated motion-induced artifacts in head CT

scans. Since only measured raw data are needed for the motion estimation and compensation, the

proposed method can be applied retrospectively to clinical helical CT scans affected by motion.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4963218]

Key words: computed tomography, iterative reconstruction, rigid motion, motion estimation, motion

compensation

1. INTRODUCTION

A slight movement of the patient can lead to a reduction

of spatial resolution in computed tomography (CT), in

severe cases resulting in corrupted images unsuitable for

diagnosis or further processing. To reduce the likelihood of

motion artifacts, CT manufacturers have made scans faster by

increasing the number of detector rows and the rate of rotation

of the x-ray source and detector. Other ways to reduce the

patient motion include general anesthesia, sedation,1 and the

use of restraining devices for head and neck imaging.2

In practice, it is difficult to completely eliminate motion,

and compensating motion artifacts is of considerable general

interest in tomography. A variety of methods for assessing

motion in CT exist, including directly estimating motion

using a camera system with visual markers3–6 or without

markers.7 Artificial or anatomical landmarks can be also

tracked in the image or projection domains.8,9 Indirect

estimation methods have been proposed where motion is

estimated through the minimization of errors in consistency

conditions10–13 or iteratively updating the motion together

with the reconstruction process.14–17 Another approach has

used similarity measures to quantify changes between

successive projections to measure subject motion.18 Once

motion parameters have been estimated, a compensation for

the motion can be applied, either to the measured raw data or

during the reconstruction process.

Among these methods, some addressed the problem

in 2D parallel-beam or fan-beam geometries.10–13 Other

retrospective motion estimation and compensation methods

addressed the problem for 3D circular cone beam CT

(CBCT).8,9,14,15 The methods in Refs. 14 and 15 minimize an

image-based cost function (which essentially detects motion

artifacts) to estimate the motion. Motion estimation and

compensation are arguably simpler in CBCT since the entire

object is normally in the field of view at all times. In contrast,
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in helical CT, the object is always truncated in the axial

direction, limiting the amount of information that can be used

to verify consistency of the projections. Relatively few studies

have been done for clinical helical CT, and some of those

require additional measurement to acquire the motion.3–6

In this study, we propose an approach to reduce or

eliminate motion artifacts in helical CT reconstruction.

The proposed motion estimation and compensation method

only needs the measured raw data. The method assumes

that for each view, the pose of the measured object

may be different. Consequently, for every view, a rigid

transformation representing the object pose is estimated. An

initial compensation for changes in pose (motion) during

projection acquisition is applied during reconstruction by

incorporating the motion estimates into the system matrix.5

Then the motion and the reconstructed image can be

updated alternately in an iterative scheme until an optimal

motion estimate is found. The proposed approach has been

validated on simulations and a phantom study by comparing

reconstructed images with and without motion compensation.

Results on patient scans are also presented.

2. MATERIALS AND METHODS

2.A. Coordinate system

A clinical helical CT system usually has a cylindrical

detector surface, with a radius equal to the detector source

distance. We define the world coordinate system c= (x,y,z) ∈

ℜ3 in Fig. 1. It is fixed with respect to the scanner, and

its z-axis coincides with the rotation axis of the scanner.

The detector coordinate system c′= (u,v,z) ∈ℜ3 is fixed with

respect to the rotating source-detector system: its origin moves

along z-axis while the system moves, u is tangent, and v is

orthogonal to the detector. For one projection view, we define

F. 1. The scanner and detector system on which motion estimation and

compensation is based. The offset along the rotation axis between origins of

the two systems is toffset.

the rigid motion transform in the coordinate system c,

Sworld= (ϕx, ϕy, ϕz, tx, ty, tz)
T, (1)

where ϕx, ϕy, and ϕz are three rotations and tx, ty, and tz are

three translations. The motion can be mapped in a detector

coordinate system c′,

Sdetector= (ϕu, ϕv, ϕz, tu, tv, tz
′)T, (2)

where ϕu, ϕv, and ϕz are rotations and tu, tv, and t ′z are

translations. A small motion in the direction perpendicular to

the detector tv results in a very small magnification of the

projection, which is assumed negligible.19 In every projection

view, then, we set tv to zero and only five parameters need to be

estimated in our scheme in the detector coordinate system c′,

Sdetector= (ϕu, ϕv, ϕz, tu, tz
′)T. (3)

2.B. Ordered subset expectation maximization
(OSEM) reconstruction

In the presence of object motion, the helical CT-orbit is

distorted into an effective orbit with arbitrary shape.5 Because

this is problematic for analytical reconstruction, an iterative

reconstruction algorithm is needed. We used OSEM as the

reconstruction algorithm,20

µn+1
j =

µn
j

i∈Sb

aij



i∈Sb

aij

f i
k

aikµ
n
k

, (4)

where f is the log converted sinogram and Sb is one subset

(consisting of b views). We used the OSEM algorithm for

convenience, but if the use of a better noise model would

be required, it can be replaced with a dedicated iterative

algorithm for transmission tomography.21

2.C. General motion estimation
and compensation scheme

The aim is to estimate the pose of the object for each of

the acquired CT views. This is achieved by a 3D registration

of the object to each of the 2D views independently. The

first estimate of the 3D object is obtained with an initial

reconstruction without motion compensation. As a result,

that first image suffers from motion artifacts, which will

adversely affect the accuracy of pose estimates associated with

each view. Nevertheless, we find that the 2D–3D registration

process described below still captures part of the true motion,

such that reconstruction with motion compensation based on

these (poor) motion estimates improves the reconstruction.

Reiterating the process with this improved reconstruction in

turn produces more accurate motion estimates. This leads to an

iterative algorithm which alternately estimates the motion for

each view and the motion compensated image. This algorithm

is explained in more detail in the following paragraphs.

Although the initial reconstructed image is motion-

contaminated, it can be used to generate a first rough motion

estimate. This motion is taken into account in a reconstruction

process to generate a motion-corrected image at the first

iteration. Then the motion-corrected image and the motion
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F. 2. General motion estimation and compensation scheme. µ is the update

of the attenuation image and S is the update of the rigid motion.

estimate are alternately updated to increase the likelihood, the

iterations are stopped when the updated motion seems to have

converged (Fig. 2). The algorithm consists of two parts: (1)

the joint image and motion (JIM) estimation and (2) the final

reconstruction (motion compensation). Each JIM-iteration

consists of 2 steps: a motion update and an image update. The

image update is done by applying multiple iterations of the

OSEM algorithm.

The implementation involves four steps: (1) a motion

update — a 2D–3D image registration to update the pose

estimate for each view in the current JIM-iteration; (2) an

image update, computed with an iterative reconstruction

algorithm incorporating the updated motion estimate in its

system matrix at the current JIM-iteration; (3) alternate

updates of both image and motion within a multiresolution

scheme; and (4) final reconstruction with a system matrix

based on the last motion estimate. Details on each part of the

framework are described below.

2.C.1. Motion update

For one projection line i, we integrate along the projection

line to define the forward projection of the estimated image µ

at current JIM-iteration,

f i =


j

aijµ j, (5)

where i is the projection line index, j is the voxel index, and

aij is the effective intersection length of the line i with voxel j.

In helical CT, the line integrals are organized in views, where

view θ contains all line integrals associated with a single

source position,

fθ = { f i} . (6)

Suppose the general motion estimation and compensation

scheme (Fig. 2) is at the JIM-iteration n, hence the current

motion estimate is sn. For view θ, the current pose estimate is

sn
θ

and the five motion parameters in Eq. (3) are estimated one

after the other. Let r be one of these parameters (a rotation

or translation) to be estimated. Assuming that the change in

the pose parameter represented by r̂ is small, the derivative of

projection f with respect to r can be approximated as a finite

difference of the intensities,

∂ fθ

∂r
≈

fθ,m− fθ(s
n
θ
)

r̂
, (7)

where fθ(s
n
θ
) is the calculated reprojection (using the current

estimates of the image and motion) and fθ,m is the measured

projection for view θ. For view θ, r̂ minimizes the difference

between fθ(s
n
θ
+ r̂) and fθ,m. To estimate r̂ in Eq. (7), we need

to know the derivative on the left hand side. Therefore, we

introduce another equation which is very similar to Eq. (7),

∂ fθ

∂r
≈

fθ(s
n
θ
+∆r)− fθ(s

n
θ
)

∆r
, (8)

where ∆r is a known small increment of the parameter to

be estimated. When ∆r represents a translation, fθ(s
n
θ
+∆r)

can be approximated as a simple translation of current

reprojection fθ(s
n
θ
); for in-plane rotation, again fθ(s

n
θ
+∆r)

can be approximated as a simple rotation of the reprojection

fθ(s
n
θ
), as shown in Fig. 3. For the two out-of-plane rotations,

we calculated fθ(s
n
θ
+∆r) with a forward projection using a

system matrix adjusted with ∆r .

Equations (7) and (8) assume that a small increment of

one degree-of-freedom rigid motion only results in a linear

change of the intensities in the projection. All the above lead

to a least squares minimization problem for view θ at the

current JIM-iteration n,

r̂ = arg min
r

�
∆r

�
fθ,m− fθ(s

n
θ )
�
−r

�
fθ(s

n
θ +∆r)− fθ(s

n
θ )
��2

.

(9)

To find r̂ , Eq. (9) was solved analytically. Defining

Pθ = fθ,m− fθ(s
n
θ ),

Qθ = fθ(s
n
θ +∆r)− fθ(s

n
θ ) (10)

and setting the derivative of the right hand side in Eq. (9) with

respect to r to zero, one obtains

r̂ =


N

Pθ ·Qθ








N

Qθ
2







∆r, (11)

where N is the total number of voxels in projection view θ.

F. 3. In the detector coordinate system, the effect of object translation or

rotation parallel to the detector can be well approximated as translation and

rotation of the projection. For simplicity, the curvature of the detector is

ignored. In the left half figure, m is the magnification factor from the object

to detector.
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The above procedure showed how to estimate one

parameter in one projection view. For view θ, this procedure

was applied to estimate all five parameters in Eq. (3). The

sequence of the estimation was translation first, then rotation.

The newly estimated parameter values were used immediately

when estimating the value of next parameter. This sequential

estimation of five motion parameters for all projection views

completes the update of the rigid motion at the current

JIM-iteration (Fig. 2).

Now the estimated motion is obtained in the detector coor-

dinate system c′ (Fig. 1). It is transformed to the motion in the

world coordinate system c, as motion-corrected reconstruction

requires the motion in the world coordinate system,
S
n,inc
θ
→T

n,inc
θ


θ=0, ...,M

(12)

where T is the 4×4 homogeneous matrix representation of

the estimated motion in the world coordinate system, M is the

total number of projection views. More details about Eq. (12)

are given in the Appendix.

The transformation matrix obtained in the nth JIM-iteration

was then used to update the previous motion estimate for every

view, which was used in the next JIM-iteration (n+1),
Tn+1
θ =Tn

θ T
n,inc
θ


θ=0, ...,M

(13)

2.C.2. Image update

After obtaining the motion, the image representing the

attenuation coefficients can be updated with iterative recon-

struction. We used OSEM as the reconstruction algorithm.

Instead of moving the reconstructed image in every

view, rigid motion compensation is done by considering a

coordinate system fixed to the object and incorporating the

motion (now associated to the source-detector pair) into the

system matrix. This corresponds to an arbitrary 3D motion

of a virtual gantry around the object being scanned, created

by the superposition of the inverse of the object motion on

the helical trajectory.5 Motion compensation is enabled by

introducing a modified version of standard OSEM,

T̂n+1
i = invert(Tn+1

i ),

µn+1
j =

µn
j

i∈Sb

T̂n+1
i

(aij)



i∈Sb

T̂n+1
i (aij)

f i
k

T̂n+1
i

(aik)µ
n
k

, (14)

where T̂i is a 4× 4 transformation matrix applied to the

projection line i. If Ti is the identity matrix for all projection

lines, then Eq. (14) is the same as standard OSEM [Eq. (4)].

In helical CT, Ti is constant for all projection lines in one

projection view; hence, the inversion is done for every single

view. Because of the high rotation speed and the large number

of views, the motion within a single view is negligible.

Distance-driven projection is used for interpolation during

the (back) projection.22 The new estimate of the attenuation

image is then used for the next motion update (step 1).

2.C.3. Multiresolution alternate updates

By repeating steps 1 and 2, we can update the motion

[Eq. (13)] and reconstruction [Eq. (14)] alternately. Because

F. 4. The number of OSEM-iterations and subsets applied for the image

update at each resolution level. Note that we stop the estimation at the second

last level; hence, no image and motion updates were computed at level 1.

the image and the motion parameters are jointly estimated

from the measured data, the problem of error propagation is

minimized. An approach to reduce computation time is to

apply a multiresolution technique. We utilized this by running

the algorithm from a coarse to fine representation of the

image. For example, the starting image resolution level is

8×8×8, i.e., a down-sampling factor of eight was applied

in all directions. There is a resampling with a factor of two

between adjacent levels. Image updates were reconstructed at

coarse resolution at early JIM-iterations, while the resolution

increased as the iteration numbers increased. The number of

OSEM-iterations applied for the image update was the same

within one resolution level. These numbers were optimized

based on simulations which had a similar configuration as

the patient study (Fig. 4). A possible additional advantage

of the multiresolution technique is that it may help avoiding

convergence to an undesired local maximum.

It was not obvious how to define good stopping criteria

when estimating the motion at each level, especially

considering that the ground truth image was missing for

clinical studies. In our implementation, the summation of

projection errors between the reprojected and measured data

over all views was computed, and at each resolution level,

the iterations were stopped when the relative change of this

error measure did not exceed 0.2%. In our experiments,

we observed that the motion estimate hardly changed

during the computations at the finest resolution. Since these

computations (if included) are the most expensive ones in the

multiresolution scheme, we stopped the scheme at the second

finest resolution.

The motion updates were smoothed (by filtering each

degree-of-freedom independently along the projection views)

to remove outliers. We chose the Savitzky–Golay filter23 to

do the smoothing. The optimal size of the smoothing kernel

depends on both the view sampling rate of the measured

data and the axial detector extent. The clinical data usually

have a high view sampling rate, while we used a lower rate

in simulations. The axial extent varies with different scan

configurations (slice collimation). The optimal smoothing

kernels are determined by simulations with several common

collimation configurations, as shown in Table I. If the number

of views per rotation is increased, the number of kernel points

is increased accordingly.

2.C.4. Final reconstruction

When the motion estimate has converged, a final

reconstructed image with diagnostic quality must be produced

for a clinical scan (Fig. 2). One way to speed up the final
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T I. The motion smoothing kernel width for common slice collimation.

Case 1 Case 2 Case 3 Case 4

Angles used during

motion estimation

150 150 150 150

collimation (mm) 96×0.6 64×0.6 32×0.6 16×0.6

(32×1.2)

Smoothing kernel (points) 17 23 75 105

reconstruction is choosing an initial image which is close to the

maximum likelihood solution. Faster convergence is achieved

if the iterative reconstruction could be started from a sharper

image. In simulations we started the final reconstruction with

the last image update from the alternate updates. Since the

alternate multiresolution scheme was terminated at a coarser

grid, the initial image must be created by interpolating to the

finer grid, and as a result, the initial image is relatively smooth.

For that purpose, we implemented an approximate helical

Feldkamp–Davis–Kress (FDK) algorithm. We utilized all

the data in each projection view. A first order motion

compensation is obtained by taking the motion for each view

into account in the backprojection step. This approximation

creates artifacts, but these have typically low spatial

frequencies. Since low frequencies tend to converge relatively

fast in iterative algorithms such as OSEM, only few updates

are needed to eliminate them. For the clinical studies, this

FDK-initialization was used since it was found to be more

efficient to reach convergence.

To further accelerate the final reconstruction, Nesterov’s

momentum approach24 was applied (using all previous iterates

to compute the momentum) in the final reconstruction. All for-

ward and backward projection operations were implemented

in OpenCL and run on a GPU (NIVIDIA Tesla C2075).

2.D. Design of the experiments

2.D.1. Simulations

In simulations, measured motion segments from volunteers

were applied to a phantom to generate simulated CT scans

subject to patient motion. Details about measuring these

motions are given in Ref. 6. The phantom was a 3D

voxelized phantom from the Visible Human Project.25 The

image intensities were converted from Hounsfield (HU) to

attenuation coefficients (cm−1) at an effective energy of 70 keV.

Image size was 256×256×240; pixel size was 1×1×1 mm3.

All helical scans were simulated as being scanned with

a Siemens Definition AS CT scanner (Siemens Medical

Solutions USA, Inc., Malvern, PA), with reduced angular

sampling to reduce computation times. The scan parameters

were angles per rotation 150, pitch 1.0, and collimation

32× 1.2 mm. Six measured motion segments (referred as

studies 1 to 6) were applied to the phantom for the simulated

helical scans. Examples of volunteer motion segments are

shown in Fig. 5. To avoid artifacts, all simulated helical

scans covered a bit more than the entire object. Reconstructed

images from these scans were analyzed quantitatively to

assess the performance of the proposed method.

Alternate updates of both image and motion were

performed within the multiresolution scheme to obtain the

final motion estimate. OSEM was used for all reconstructions,

with motion compensation enabled [Eq. (14)]. During the JIM,

the attenuation image was updated using the OSEM iteration

schemes shown in Fig. 4. For the final reconstruction, the

pixel size was 1× 1× 1 mm3, and four iterations with 60

subsets were applied.

Poisson noise was added to the raw simulated data before

the reconstruction (assuming that 1000 photons were detected

F. 5. Examples of the simulated volunteer head motion. (a) Moderate motion from study 1. (b) Slight motion from study 6. Details of motion tracking are

given in Ref. 6.
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T II. Scan and reconstruction parameters.

Patient 1 Patient 2 Patient 3 Patient 4

Tube voltage (kVp) 120 120 120 120

Tube current (mA) 120 154 150 150

Rotation time (s) 1.0 1.0 1.0 1.0

Pitch 0.55 0.55 0.55 0.55

Angles per rotation 4200 4200 4200 4200

Collimation (mm) 64×0.6 96×0.6 32×0.6 96×0.6

Flying focus phi, z phi, z phi, z phi, z

Pixel size (mm×mm×mm) 0.4×0.4×0.75 0.45×0.45×0.5 0.455×0.455×0.5 0.451×0.451×0.5

Dimension 512×512×219 512×512×550 512×512×376 512×512×404

on each detector element in the blank scan). Again OSEM was

used for this reconstruction, but as mentioned in Sec. 2.C,

it can be replaced by a dedicated iterative algorithm for

transmission tomography.

2.D.2. Patient scans

The method has been applied to clinical studies in which

motion artifacts had been observed. The anonymized raw

data of four patients who had previously undergone head

CT scans in the Department of Radiology at Westmead

Hospital, Sydney, Australia were collected with the approval

of the Human Research Ethics Committee of the Western

Sydney Local Health District. The scans were performed on

a Siemens Force scanner (Siemens Medical Solutions USA,

Inc., Malvern, PA). The scan parameters are listed in Table II.

Because the head support and the bed do not move with the

patient during the scan and would compromise the estimation

of the patient motion, they were removed from the raw data

prior to further processing. The head support and (or) bed were

first segmented from an initial low-resolution reconstructed

image. The segmented portion of image was then forward-

projected to generate a new set of projections, which were

subtracted from the measured projections before the motion

estimation and compensation scheme was executed.

Because of the large size of the raw data, motion was

estimated at every eighth view to accelerate both motion and

image updates. This resulted in approximately 500 views per

rotation. With a rotation time of 1 s, this yields a temporal

sampling of 500 Hz, which was considered sufficient for

motion estimation. The multiresolution JIM scheme was

applied as in Sec. 2.C.3. For all patient studies, the motion

smoothing kernel sizes were selected based on Table I.

For the final OSEM reconstruction, the starting image

was computed with helical FDK reconstruction with motion

compensation enabled. Six iterations with 30 subsets were

F. 6. (a) Setup of the Hoffman phantom used in the experiment and (b) measured motion.
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F. 7. Preprocessing of the motion-corrected and uncorrected images before quantitative analysis in simulation studies.

applied in combination with Nesterov’s acceleration. Other

reconstruction parameters are listed in Table II. Also, the

entropy of the reconstructed images was computed for

reconstructions with and without motion compensation.

2.D.3. Phantom scan

In our previous work,5 we developed and optimized a rigid

motion compensation technique for helical CT brain scanning,

in which the motion information was obtained using an

optical motion tracking system. We observed that after motion

compensation based on the tracking data, some residual

artifacts were still present. We attributed these artifacts to

the finite accuracy of the motion tracker. In this experiment,

we verified whether the proposed method can be used to refine

the motion estimate from the optical system.

The scan was performed in the Department of Nuclear

Medicine and Ultrasound at Westmead Hospital, on a Siemens

Sensation 16 scanner (Siemens Medical Solutions USA, Inc.,

Malvern, PA). The scan parameters were pitch 1.0, tube

voltage 120 kVp, tube current 280 mA, and tube collimation

16×0.6 mm. Flying focus was turned off.

An optical motion tracking system (Polaris Spectra,

Northern Digital, Inc., Waterloo, Canada) was placed at the

rear of the scanner. A 3D Hoffman brain phantom which

contained air inside was used in this experiment. The phantom

was placed off-center on the curved bed and held in place with

a wedge [Fig. 6(a)]. During the scan, the wedge was removed

by pulling a string from outside the room. The phantom then

started rolling left and right on the bed to finally come to rest

at a stable position at the center of the bed. This motion was

too severe to be compensated only by the proposed method,

since the initial reconstruction was corrupted severely. The

tracked rigid motion is shown in Fig. 6(b), relative to its pose

at the start of the scan.

2.E. Evaluation of the results

In the simulation studies, the effects of motion compensa-

tion were evaluated by visual assessment and with quantitative

F. 8. Results from the simulation study 1 using moderate motion [Fig. 5(a)]. Selected transaxial (top) and coronal (bottom) slices from reconstructions without

and with motion compensation, and also from the true image.
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F. 9. Results from the simulation study 6 using slight motion [Fig. 5(b)]. Similarity metrics with and without motion compensation over reconstructed planes.

Top: RMSE. Bottom: MSSIM. The difference between the static reconstruction and true image was displayed as the reference.

analysis. The reconstructed images and the ground truth

images were compared in all planes with similarity metrics.

We chose root-mean-square error (RMSE) and mean structural

similarity (MSSIM)26 as the metrics. Note that before the

calculation of these metrics, both motion-corrected and

uncorrected images were registered to the true image plane

by plane (Fig. 7). This was done because motion and motion-

compensation may introduce positional differences which are

irrelevant for image quality and therefore should not affect

the evaluation of similarity.

In the patient studies, image entropy, with and without

motion compensation applied, was also computed (plane-by-

plane), based on the assumption that motion-induced artifacts

would tend to increase the image entropy.

In the phantom study, the quality of the reconstructed

images was assessed for reconstructions with and without

motion compensation by comparison to reconstructions from

motion-free CT-scans.

3. RESULTS

3.A. Simulations

Figure 8 shows the corrected image of a selected simulation

using a moderate motion segment. Most of the distortions are

eliminated. Figure 9 shows the quantitative analysis of a

selected simulation using a slight motion segment. The true

image is much more similar to the corrected image than the

uncorrected one. Figure 10 shows the overall improvement

across all image planes in all six studies with different

motions. Figure 11 shows the result of the simulation study

1 with relatively high noise. The motion estimation and

compensation is still effective on data with high noise level.

3.B. Patient scans

Figures 12 and 13 show the uncorrected image (recon-

structed with the scanner system software) and motion-

corrected reconstructed images from patient 1 and patient 2,

respectively. Figure 14 compares the image of a repeat scan

(which was done because of the observed motion in the

first scan) with the reconstructions, with and without motion

compensation for patient 3. Figure 15 shows the change of

the total image entropy, as an indicator of artifact reduction.

3.C. Phantom scan

As shown in the top row of Fig. 16, some small

irregularities were visible at the edges of the phantom in

the reconstructed image after a first compensation using the

tracked motion. A possible reason is the finite accuracy of the

pose measurements. For this scan, we applied the proposed

method to compensate these residual “jagged” artifacts due

to the imperfect motion recording. The motion estimation

F. 10. Box plots of improvement over reconstructed planes of each individual study — simulation studies (1-6), phantom scan (7). Left: RMSE improvement.

Right: MSSIM improvement. The upper and the lower limits of the bar are the maximum and minimum. The upper and the lower limits of the box are the first

and third quartiles. The central line is the median. The circles are the outliers. As a reference for each study, the red dashed lines represent the medians of the

improvement of the static reconstructed image over the uncorrected image.

Medical Physics, Vol. 43, No. 10, October 2016



5713 Sun et al.: An iterative projection-based motion estimation and compensation scheme for head x-ray CT 5713

F. 11. Noisy simulation of study 1. Selected transaxial (top) and coronal

(bottom) slices show the improvement on image quality.

process was identical to the one applied in the patient studies,

except that the measured motion was used as the initial motion

estimate. The proposed method removed the artifacts (Fig. 16,

middle). Quantitative analysis was done similarly to what has

been done in simulation studies. The true image was obtained

from a static scan of the same phantom. Figure 10 (box 7)

shows the overall improvement of the RMSE and MSSIM

across image planes.

4. DISCUSSION

In this paper, the simulation studies were performed with

a (simulated) 64-row CT scanner, while the patient studies

were performed with a 96-row CT, and the phantom study

F. 12. Top: selected transaxial plane, without (left) and with (right) com-

pensation for motion artifacts in a scan from patient 1. The uncorrected image

was from a standard vendor reconstruction. Bottom: the same plane that

is shown in a narrow window [Gaussian smoothed with full width at half

maximum (FWHM) = 2 mm].

F. 13. Top: selected transaxial plane, without (left) and with (right) com-

pensation for motion artifacts in a scan from patient 2. Bottom: the same

plane that is shown in the same narrow window used in Fig. 12 (Gaussian

smoothed with FWHM = 2 mm).

was performed with a 16-row CT. In other tests (not shown

here), the method performed well for data from scanners with

different row numbers as well, but the performance of the

proposed method was found to be better in the case of a

higher number of detector rows, as expected since a wider

detector provides more information in a single projection

view. For the data from a scanner with a narrower detector, a

stronger smoothing was needed to suppress the noise on the

estimated motions (Table I).

The large number of CT views in clinical scans creates

an impressive computational challenge. Currently, the time

for estimating the motion is about 2 h for a single patient

scan (from Siemens Force scanner), while the time for the

final iterative reconstruction is about 12 h (a high number

of updates is required to obtain a quality comparable to the

vendor images). A possible way to accelerate the final recon-

struction is to replace the iterative reconstruction algorithm

F. 14. Top: selected coronal plane without (left) and with (middle) com-

pensation in a scan (effective mAs 272) from patient 3. As a reference, the

repeated scan (effective mAs 327, registered to the first scan) is displayed on

the right. Bottom: another plane contains a lesion that is shown in the same

narrow window used in Fig. 12 (Gaussian smoothed with FWHM = 2.5 mm).
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F. 15. The total entropy change for four patient scans. The entropy in each

individual plane (not shown here) decreased for all the studies.

with a dedicated motion-sensitive analytical reconstruction

algorithm. This is under development by the authors.

As illustrated in Fig. 8, the proposed method performed

well even for relatively large patient motion. In our

simulations, the proposed method usually worked well when

the amplitude of the rotations was less than 10◦ and the

amplitude of the translations was less than 20 mm, which

in our opinion are unlikely to be exceeded in most clinical

scans. Nevertheless, we observed that it did not perform well

in cases of severe motion such as that of Fig. 6(b). We have

shown previously that optical motion tracking methods are

effective, even for very severe motion.5,6 As shown in Sec. 3.C,

the proposed method can refine the tracker based motion

estimation. Consequently, combining both methods would

relax the specifications for the tracking device significantly

and at the same time provide accurate motion compensation

even in the presence of very severe motion.

The multiresolution technique accelerated the motion

estimation algorithm. Using a too coarse starting resolu-

tion, however, should be avoided because the excessive

blurring may suppress important high-frequency features.

We observed that this can lead to an overestimation of the

motion.

We ignored estimating the translation perpendicular to the

detector in every projection view. We repeated the simulation

studies in Sec. 3.A, where that translation was estimated

and compensated too. The results (not shown) indicated that

compensating for that translation had no or a negligible

effect on the quality of the corrected image. Considering the

additional time to estimate that particular motion, we did not

take it into account in our studies.

The estimated motion is not always identical to the true

motion. First, the pose of the reconstructed object is arbitrary

and probably roughly corresponds to the average pose during

the scan. Moreover, slow components of the motions may

not be fully estimated, but instead partly be incorporated as

a gradual and almost rigid distortion of the image along the

z-axis. Such a small distortion can be observed in the phantom

image of Fig. 16 (middle). These small distortions are not

expected to have an adverse effect on the diagnostic value of

the image.

The proposed method relies on 2D–3D image registration

and is therefore expected to be less effective when the contrast

in the object is low. In CT brain imaging, the high contrast

between the skull and the soft tissue was found to provide

adequate information for estimating the motion. For other

possible applications where the contrast would be lower,

preprocessing to enhance the contrast of the raw projection

data might be necessary.

We only considered the application on diagnostic CT where

the noise in the raw data is typically very low. We performed a

noisy simulation, in which the proposed method worked fine

F. 16. Selected transaxial, sagittal, and coronal planes, with and without compensation for residual motion. Top: reconstructed image with motion

compensation based on optical tracking data; middle: reconstructed image with further compensation by the proposed approach; and bottom: reference image

reconstructed from a static scan.
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even with relatively high Poisson noise. We think one reason

is that most of the artifacts were already eliminated during

the early resolution levels, which had smooth image updates

as the pixel size was large. Still, it would be interesting to

investigate how the proposed method works on the data from

low dose CT scans.

The motion was estimated using an analytical expression

based on a linearization. Instead, a more accurate nonlinear

least squares algorithm could be used. However, that

approach would have a much larger computational cost. The

linearization approximation becomes better when the estimate

is closer to convergence, and the experimental results indicate

that even for large motions it is good enough to improve the

estimate in every JIM-iteration.

In our current approach, an independent rigid motion

was estimated for every view. The method could be further

improved by modeling the motion as a parameterized function

of time (or view number).13,16 This would reduce the number

of unknowns and impose a physically meaningful smoothness

to the estimated motion.

5. CONCLUSION

In this paper, we proposed a motion estimation and

compensation approach for helical x-ray CT of the head, for

which the only required input is the measured raw data. Since

no additional measurements are needed, it can be applied

retrospectively to standard helical CT data. We believe that,

when sufficiently accelerated, it can become a valuable clinical

tool, since it would reduce the need for anesthesia or sedation

in children and other patients who are likely to move, and

decrease the number of repeat scans. Further testing of the

method with more clinical data is ongoing.
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APPENDIX: COORDINATE SYSTEMS MAPPING

This section explains that how the rigid motion parameters

in the detector coordinate system are transformed to a

homogenous matrix in the world coordinate system. From

Eq. (3), we have five degrees-of-freedom for each projection

view θ.

Sdetector= (ϕu, ϕv, ϕz, tu, tz)
T

Transform Sdetector into homogeneous matrix,

Tdetector

=



cosϕz −sinϕz 0 0

sinϕz cosϕz 0 0

0 0 1 0

0 0 0 1





1 0 0 0

0 cosϕu −sinϕu 0

0 sinϕu cosϕu 0

0 0 0 1




cosϕv 0 sinϕv 0

0 1 0 0

−sinϕv 0 cosϕv 0

0 0 0 1





1 0 0 tu

0 1 0 0

0 0 1 tz

0 0 0 1



.

Now the motion is in detector coordinate system, we still need

to map Tdetector into world coordinate system,

Tworld=



cosθ −sinθ 0 0

sinθ cosθ 0 0

0 0 1 toffset

0 0 0 1



· Tdetector,

where toffset is the offset between the world and the detector

system in the direction of bed movement.
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