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Abstract— Although current CT systems can scan the head in 

a very short time, patient motion sometimes still induces 

artifacts.  If motion occurs, one has to repeat the scan; to avoid 

motion, sedation or anesthesia is sometimes applied. We propose 

a data-driven method to iteratively correct this motion together 

with the reconstruction. In every iteration, we estimate the 

motion view-by-view, which then can be used to update the 

system matrix used during reconstruction. A multi-resolution 

scheme was used to speed up the convergence of the joint 

estimation of the motion and reconstruction. The method was 

evaluated on simulations and on real patient scans. The quality 

of the reconstructed images was improved substantially after the 

correction. The proposed method eliminated motion-induced 

artifacts in head CT scans.  

Index Terms—Computer Tomography (CT), iterative reconstruction, 

rigid motion, data-driven, motion correction.  

I. INTRODUCTION 

A slight movement of the patient will lead to a reduction of 

spatial resolution in CT, in severe cases resulting in corrupted 

images unsuitable for diagnosis or further processing. To 

reduce the likelihood of motion artifacts, CT manufacturers 

have made scanners faster by increasing the number of 

detector rows and the rate of rotation of the x-ray source and 

detector. Other ways to reduce the patient motion include 

general anesthesia, sedation and the use of restraining devices 

for head and neck imaging [1]. 

Despite of the effectiveness of minimizing the motion 

beforehand, assessment of the subject motion is of 

considerable general interest in tomography. A variety of 

methods for the estimation of motion in CT exist, including 

direct motion estimation using a camera system with visual 

markers [2] or without markers [3]. Indirect estimation 

methods have been proposed where motion is estimated 

through the minimization of errors in consistency conditions 

[4], or iteratively updating the motion together with the 

reconstruction process [5]. Once motion parameters have 

been estimated, the motion can be corrected for either in the 

measured raw data or during the reconstruction process. 

 While most of the retrospective methods in CT imaging 
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addressed the problem for circular cone beam CT (CBCT),  

relatively few studies has been done for helical CT. Motion 

correction is arguably simpler in CBCT since the entire object 

will normally be in the field of view at all times. In contrast, 

in helical CT the object is always truncated in axial direction, 

which provides limited information to restore the consistency 

in projections. 

    In this study, we propose an approach to reduce or 

eliminate the motion artifacts in helical-CT reconstruction. 

The approach is based on our previous work [4]. The 

correction only needs the measured raw data, hence it is called 

data-driven approach. We performed simulations and a 

patient study to validate the proposed approach, comparing 

reconstructions with and without motion correction.  

II. METHOD 

A. Coordinate system 

A clinical helical CT system usually has a curved detector. 

We define a coordinate system 3( , , )c x y z   in Fig. 1, 

which is fixed with respect to the scanner, its z-axis coincides 

with the rotation axis of the scanner. Detector coordinate 

system 3( , , )c u v z   is fixed with respect to the 

rotating source-detector system: its origin is in the center of 

the detector, z  is parallel to z , u  is tangent and v  is 

orthogonal to the detector. For one projection view, we define 

the rigid motion transform in the coordinate system c  : 

                     
T( , , , , , )world x y z x y zS t t t                (1) 

where 
x , 

y ,
z  are the 3 rotations, 

xt , 
yt , 

zt  are the 3 

translations in the world coordinate system. The transform 

can be mapped in the coordinate system c  : 

                     
T

det ( , , , , , )ector u v z u v zS t t t                 (2) 

where
u , 

v , 
z  are the rotations 

ut , 
vt , 

zt
 , are the 

translations in the detector coordinate system. A small motion 

vt in the direction perpendicular to the detector results in a 

very small magnification of the projection, which we assume  
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Fig. 1 The scanner and detector coordinate systems on which motion 

correction is based.                                                                   

to be negligible [5]. In every projection view, then, we set 
vt  

as zero and only 5 parameters need to be estimated in our 

correction scheme
u ,

v , 
z ,

ut and 
zt
 : 

               
T

det ( , , , , )ector u v z u zS t t                             (3) 

    The estimated motion in the detector coordinate system can 

later be transformed to the motion in the world coordinate 

system, as the reconstruction requires a transform in the world 

coordinate system:        

                          det det

det

ector ector

world ector

S T

T R T



 
                                  (4) 

where T is the 4×4 homogenous matrix representation of the 

transform, R is the 4×4 transformation matrix that maps the 

detector coordinate system to world coordinate system. 

B. OSEM reconstruction 

In the presence of object motion, the helical CT-orbit is 

distorted into an effective orbit with arbitrary shape. Since 

this is problematic for analytical reconstruction, an iterative 

reconstruction algorithm is needed. We used Ordered Subset 

Expectation Maximization (OSEM) as the reconstruction 

algorithm [6]. We used the OSEM-algorithm for convenience, 

but if the use of a better noise model would be required, it can 

be replaced with a dedicated iterative algorithm for 

transmission tomography. 

C. General motion correction scheme 

The following describes the basic idea of the data-driven 

motion correction: motion-corrected reconstruction and 

motion were alternately updated to increase the likelihood, the 

iterations were stopped when the motion estimate seemed to 

have converged (Fig. 2). The implementation involves: (1) a 

2D-3D image registration to update the motion estimate for 

each view at the current iteration; (2) an image update with 

iterative reconstruction, incorporating the updated motion in 

the system matrix; (3) alternate updates of both image and 

motion with a multi-resolution scheme; (4) final 

reconstruction with a system matrix based on the last motion 

estimate. The following 4 paragraphs discuss the details about 

each part of the framework. 

  
Fig. 2. General motion estimation scheme. μ is the update of the 

attenuation image, s is the update of the rigid transform, n is the 

iteration number. A multi-resolution scheme was applied to the 

motion estimation, increasing the sampling as the iteration number. 

     

1) Motion update  

From the measured raw data an initial image is reconstructed. 

This image can be reconstruction produced with the system 

software (postprocessed to convert Hounsfield units back to 

attenuation integrals), or a first iterative reconstruction (Eq. 5) 

from the measured data. 

    For one projection line i , we integrate along the projection 

line to define the forward projection of the current estimate 

 : 

                                  
i ij j

j

f a                              (5) 

In helical CT, we organize the line integrals in views, where 

view θ contains all line integrals associated with a single 

source position: 

                                      if f                                   (6) 

    For each view, the 5 motion parameters are estimated one 

after the other. Suppose the general motion correction scheme 

(Fig. 2) is at the iteration n, hence the current motion update 

is 
ns .  Assuming that the motion represented by the (rotation 

or translation) parameter ŝ is small, the derivative of 

projection f  with respect to ŝ can be approximated as a 

finite difference of the intensities: 

                                
ˆ( ) ( )

ˆ

nf f s f s

s s

   



                       (7) 

where ( )nf s
 is the calculated re-projection (using the current 

estimates for the image and motion) and ˆ( )f s
is the measured 

projection for view  . To estimate ŝ  in Eq. 7, we need to 

know the derivative on the left hand side, hence we introduce 

another equation which is very similar to Eq. 7: 

                             
( ) ( )nf f s f s

s s

    


 
                    (8) 

where s  is known small increment of the parameter to be 

estimated. When s  represents a translation, ( )f s   can be 

approximated as simple translation of the current re-

projection ( )nf s
; for in-plane rotation, again ( )f s  can be 

approximated as a simple rotation of the re-projection f , as 

shown in Fig.3. For the two out-of-plane rotations, we 

calculate ( )f s   with a forward projection using a system 

matrix adjusted with s . 

    Eq. 7 and 8 assume that a small increment of one degree-

of-freedom rigid motion only results in a linear change of the 

intensities in the projection. All above lead to a least squares 

minimization problem for current view at current iteration : 

      

2

ˆ

ˆ( ) ( )
arg min

ˆ ( ) ( )
incre

n n

n

n n
s

s f s s f s
s

s f s s f s

 

 

      


     

        (9) 

To find 
n

incres , Eq. 9 was solved analytically. Defining 

                           
ˆ( ) ( )

( ) ( )

n n

n n

P f s s f s

Q f s s f s

  

  

  

  
                   (10) 

and setting the derivative of the Eq. 9 with respect to  
to zero, one obtains:  

ŝ
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incre

N
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Q
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


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 



                    (11) 

where N is total number of voxels in one projection view  .  

    This procedure was applied to estimate all five parameters 

in Eq. 3. The sequence of the estimation is translation first, 

then rotation. The newly estimated parameter values were 

used immediately when estimating the value of next 

parameter. This sequential estimation of the five motion 

parameters for all projection views completes the update of 

the rigid motion in the current iteration. Then the rigid motion 

parameters for each projection view were transformed into a 

homogenous matrix in the detector coordinate system (Fig.1). 

Applying the Eq. 4, the matrix was mapped into world 

coordinate system. The transformation matrix obtained in the 

current iteration (n) was then used to update the previous 

motion estimate for every view, which will be used in the next 

iteration (n+1): 

                                 
1

n n

incre

n n n

S T

T T T



  





 
                           (12) 

 

 
Fig. 3 Cartoon illustrating that the effect of object translation or 

rotation parallel to the detector can be well approximated as 

translation and rotation of the projection. For simplicity, the 

curvature of the detector was ignored. In the figure at left, t is the 

magnification factor from the object to detector.  

2) Image update 

After obtaining the motion, the image representing the 

attenuation coefficients can be updated with iterative 

reconstruction. We used OSEM as the reconstruction 

algorithm.  

   Instead of moving the reconstruction image, rigid motion 

correction was done by considering a coordinate system fixed 

to the object and incorporating the motion (now associated to 

the source-detector pair) into the system matrix. This 

corresponds to an arbitrary 3-dimensional (3D) motion of the 

virtual gantry around the object being scanned [2]. Motion 

correction was enabled by introducing a modified version of 

standard OSEM: 

        

1 1

1 1

n+1 1

( )

( )
( ) ( )

n n

n

jn n i
j i ij n n

ii ij i ij j

i k

T invert T

m
T a

T a T a

 






 

 





 
 

    (13) 

where i  is the projection line index, j  is the voxel index, 

ija  is the effective intersection length of line i with voxel j , 

m is the log converted sinogram, bS  is one subset of 

projections of b subsets. 
iT  is a 4 4 rigid transformation 

matrix applied to the projection line i . If 
iT is the identity 

matrix for all projection lines, then Eq. 13 is the same as 

original OSEM. In helical CT, 
iT is constant for all projection 

lines in one projection view. Because of the high rotation 

speed and the large number of views, the motion within a 

single view is negligible. 

    Distance-driven projectors were used for interpolation 

during the (back) projection [7]. The new estimation of the 

attenuation from step 2 can then be used for next motion 

update step (step 1). 

3) Multi-resolution alternate updates 

By repeating steps 1 and 2 we can estimate the reconstruction 

(Eq. 13) and motion (Eq.14) alternately. Because the 

correction of the image and the correction of the transform 

parameters are jointly estimated from the measured data, the 

problem of error propagation is mitigated.  

An approach to reduce the computation time is to apply a 

multi-resolution techniques. We utilize this technique by 

running the algorithm with a coarse to fine representation of 

the raw data and the image. As in Fig. 2, the image update is 

reconstructed at coarse resolution at early iterations, while the 

resolution increases as the iteration numbers increase. 

Similarly, the projections in Eq. 10 are computed with 

gradually increased resolution. An possible additional 

advantage of the multi-resolution scheme is that it may help 

to avoid convergence to an undesired local maximum. Since 

these computations are the most expensive ones in the multi-

resolution scheme, we stopped the scheme at the one but 

finest resolution. 

As proposed in [2], the motion estimates were smoothed 

(by filtering each component independently) to remove 

outliers. We chose the Savitzky-Golay filter [8] to do the 

smoothing right after every motion update. We found that 

selection of the 15-point and 201-point kernel can achieve 

satisfactory jitter suppression, in simulations and patient 

scans respectively. 

It is not obvious to define good stopping criteria for the 

motion estimation, especially considering the ground truth 

image is missing for the clinical data. In the motion estimation 

scheme, a maximum number of iterations was chosen for each 

resolution level. In addition, the summation of projection 

errors between the re-projected and measured data over all the 

views was computed, and at each resolution level, the 

iterations were stopped earlier when the relative change of 

this error measure did not exceed 5% of the summed error 

between last re-projected and measured data.  

 

4) Final reconstruction 

When the motion estimate has converged, a final 

reconstruction of diagnostic quality must be produced. In 

simulation studies we start the final reconstruction with the 

last image update from the alternate updates. To achieve a 

similar speedup in the clinical study, we start the final 

reconstruction from an approximate helical Feldkamp-Davis-

Kress reconstruction (motion correction was enabled in the 

backprojection step), provided the image is not affected much 

by the motion artifacts. 

    To further accelerate the final reconstructions, the forward 

and backward projection operations were implemented in 

OpenCL and run on a GPU (NIVIDIA Tesla C2075). 



 

 

 

III. EXPERIMENTS AND RESULTS 

A. Simulation 

In the simulation, a segment of measured motion from a 

volunteer was applied to a voxelized phantom to generate a 

simulated scan. Reconstructions from this scan were analyzed 

quantitatively to assess the performance of the motion 

correction algorithm. The phantom is a 3D voxelized phantom 

from the Visible Human Project [9]. The unit was converted 

from Hounsfield (HU) to attenuation coefficient (cm-1) at 

peak kilovoltage of 70 kVp. The image size was 

256×256×240, pixel size was 1×1×1 mm3.  

A helical scan was simulated as being scanned with a 

Siemens Definition AS CT scanner (Siemens Medical 

Solutions USA, Inc., Malvern, PA), with reduced angular 

sampling to reduce the computation times. The crucial 

parameters were: angles per rotation 250, pitch 1.0, 

collimation 32×1.2 mm.  The motion was applied to the 

phantom for the simulated helical scan. To avoid the cone-

beam artifacts, all simulated helical scans covered a bit more 

than the entire object. 

    OSEM was used for all reconstructions, with motion 

correction enabled (Eq. 13). During the joint estimation of the 

attenuation image and the motion, the attenuation image was 

updated using 1 OSEM iteration with 40 subsets. 

Reconstruction pixel size was 1×1×1 mm3 at the finest 

resolution. Alternate updates of both image and motion were 

performed within a multi-resolution scheme to obtain the 

optimal motion. For the final reconstruction, 4 iterations and 

60 subsets were applied. Fig. 4 and Fig. 5 show the estimated 

reconstruction and motion.  

 
Fig. 4. Selected transaxial and coronal slices from reconstructions 

without and with motion correction, and also from the true image. 

 
Fig. 5. The estimated motion values as a function of the view angle 

for the two most prominent motion parameters. Left: x , right: xt . 

B. Real scan 

The method has been applied to clinical studies in which 

motion artifacts had been observed. The outcome was 

evaluated by assessing the image visually. 

The anonymized raw data of one patient who had 

previously undergone a head CT scan in the Department of 

Radiology at Westmead Hospital, Sydney, Australia, were 

collected with the approval of the Human Research Ethics 

Committee of the Western Sydney Local Health District. The 

scan was performed on a Siemens Force scanner (pitch 0.55, 

tube voltage 120 kVp, tube current 150 mAs, angles per 

rotation 1050, collimation 64×0.6 mm). Flying focus was 

turned on in both z and phi directions. 

Because of the huge size of the raw data, we read and 

average every 8 projection of them for the motion estimation. 

This accelerated both the motion updates and the image 

updates. We used OSEM as the reconstruction algorithm. The 

motion correction was enabled for all reconstructions. Unlike 

in the simulation, 2 OSEM iterations with 40 subsets were 

done for the image updates. The final reconstruction pixel size 

was 0.40039×0.40039×0.75 mm3, image size is 

512×512×436. To accelerate the motion estimation, the multi-

resolution scheme was applied as in II. C. Stopping criteria 

were also described in II. C. For the final reconstruction with 

motion correction, the starting image was set as the image 

from helical FDK reconstruction. Six OSEM iterations with 

60 subsets were applied in combination with Nesterov’s 

acceleration [10] on the GPU. Fig. 6 shows the original 

reconstructed image and motion-corrected reconstructed 

image. 

 
Fig. 6. Selected transaxial plane, without (left) and with correction 

(right) for motion artifacts in a clinical scan.  

IV. CONCLUSION 

In this paper, we proposed a motion estimation and correction 

approach for helical X-ray CT of the head, only based on the 

measured raw data. Since no additional measurements are 

needed, it can be applied retrospectively to standard helical 

CT data. Further testing of the method with clinical data is 

ongoing. 
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